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1. Wybór tematu pracy 
 
 
Rozprawa dotyczy bardzo aktualnego problemu badawczego, jakim jest wybór obliczeniowych 
węzłów brzegowych, na których mają zostać uruchomione aplikacje działające w modelu edge 
computing. Problem wynika z rozwoju współczesnych sieci komórkowych oraz zapewnienia 
przez architekturę systemów 5G możliwości przetwarzania danych użytkownika nie tylko w 
chmurze obliczeniowej, ale także w węzłach położonych w bezpośredniej bliskości stacji 
bazowych, w celu minimalizacji czasu transmisji danych. Doktorant skupił się w pracy na 
wybranym zagadnieniu związanym z zarządzaniem aplikacjami brzegowymi - procesie 
relokacji, a więc przeniesieniu pomiędzy serwerami w celu zapewnienia ciągłości 
przetwarzania, gdy użytkownik się przemieszcza.  
 
Temat podjęty w pracy doktorskiej jest aktualny i wynika bezpośrednio z rozszerzeń standardu 
5G zaproponowanych przez organizację 3GPP i ETSI. Model przetwarzania brzegowego jest 
nowym wyzwaniem, z którym muszą się zmierzyć operatorzy sieci 5G. W chwili obecnej jest 
to tematyka, która jest intensywnie badana przez naukowców na świecie, a zagadnienia 
przetwarzania brzegowego w sieciach komórkowych są przedmiotem wielu projektów 
naukowych o zasięgu Europejskim i światowym. Badania te są bardzo istotne w celu 
umożliwienia użytkownikom sieci komórkowych korzystania z aplikacji wymagających niskiego 
opóźnienia pakietów, jak np. pojazdy autonomiczne, rzeczywistość rozszerzona (AR), czy 
operacje na odległość. Mają również duże znaczenie ze względu na skalę potencjalnego 
zastosowania – opracowane algorytmy znajdą zastosowanie w zarządzaniu serwerami 
obsługującymi aplikacje milionów użytkowników. Tematyka pracy została bardzo dobrze 
ulokowana w kontekście rozszerzeń standardu 5G, w którym opracowano architekturę i 
zasady migracji aplikacji pomiędzy serwerami brzegowymi, ale nie określono algorytmów 
decydujących o sposobie migracji, a więc rozwiązań, których dotyczy praca. Świadczy to, iż 
doktorat dotyczy bardzo aktualnego i istotnego problemu badawczego, mającego także duże 
zastosowanie praktyczne. 
 

2. Ocena układu rozprawy  
 
Rozprawa składa się z 9 rozdziałów oraz bibliografii. W pierwszym rozdziale doktorant 
przedstawił wstęp i uzasadnienie wyboru tematyki badawczej. W drugim zawarł wstęp do 
technologii 5G oraz standardów definiujących działanie sieci komórkowych. W rozdziale 3 
opisał wyzwania związane z zastosowaniem modelu przetwarzania brzegowego. W rozdziale 
4 zawarł przegląd literatury. W kolejnym rozdziale omówił demonstrator możliwości realizacji 
relokacji aplikacji, a w rozdziale 6 w sposób formalny zdefiniował problem badawczy. 
Najważniejsza część wyników pracy została zawarta w rozdziałach 7 i 8, w których doktorant 
zaprezentował 2 opracowane algorytmy: heurystyczny i oparty o uczenie maszynowe wraz z 
wynikami badania ich efektywności. Pracę zamyka zwięzłe podsumowanie w rozdziale 9. 
 
Podział rozprawy na rozdziały jest klarowny i bardzo dobrze prowadzi czytelnika od 
zdefiniowania problemu, poprzez opis stanu wiedzy i opis środowiska badawczego, do 
propozycji nowych algorytmów opracowanych przez autora i analizy ich działania. Praca jest 
napisana w sposób czytelny. Należy zwrócić uwagę na bardzo dogłębną analizę i precyzyjny 



opis sposobu realizacji przetwarzania brzegowego w sieciach 5G. Doktorant także bardzo 
klarownie opisał opracowane algorytmy, definiując każdy z nich w postaci pseudokodu. Także 
wyniki badań własnych doktoranta są jasno opisane. Przyjęta metoda organizacji pracy w 
sposób jednoznaczny pozwala na wyróżnienie wkładu własnego doktoranta od opisu stanu 
wiedzy. Ostatni rozdział dobrze podsumowuje uzyskanie wyniki i prezentuje je w kontekście 
badań w obszarze systemów przetwarzania brzegowego.  
 

3. Metodologia badawcza 
 
Doktorant w ramach realizacji pracy doktorskiej przygotował środowisko emulacyjne, złożone 
z serwerów maszyn wirtualnych i środowiska kubernetes pozwalającego odzwierciedlić 
działanie serwerów brzegowych sieci, kontrolera rdzenia sieci free5GC i symulatora części 
radiowej sieci 5G UERANSIM. Przygotowanie i konfiguracja tego środowiska wymagały wiele 
pracy, a jego działanie pozwala zweryfikować działanie narzędzi do sterowania serwerami 
brzegowymi i relokacji aplikacji w środowisku maksymalnie zbliżonym do docelowej sieci 5G. 
Środowisko to zostało wykorzystane do udowodnienia poprawności koncepcji relokacji 
aplikacji brzegowych, jednak w rozprawie nie zawarto pomiarów lub analiz wydajności 
działania takiej relokacji nawet dla prostych przypadków, co jest pewną wadą rozprawy. 
 
Metodologia badawcza oceny wydajności opracowanych algorytmów koncentruje się na 
analizie efektywności działania zaproponowanych algorytmów przenoszenia aplikacji za 
pomocą symulacji sieci komputerowych. Doktorant przygotował środowisko, które nazwał 
„Edge-Enabled 5G network simulator”, składające się z symulatora zachowania użytkownika 
końcowego odzwierciedlającego mobilność klientów, modułu sterowania działaniem 
serwerów brzegowych „Edge Orchestrator” oraz emulatora sieci 5G i topologii sieci „Network 
and Edge Topology”. Doktorant poprawnie odzwierciedlił w modelu symulacyjnym 
architekturę badanej sieci oraz metody przenoszenia aplikacji pomiędzy serwerami 
brzegowymi. Z dużą starannością także opracował model opóźnień pomiędzy transmisjami na 
poziomie miasta, regionu i sieci międzynarodowej. Problem do rozwiązania został poprawnie 
opisany za pomocą notacji matematycznej, a przepływ komunikacji pomiędzy poszczególnymi 
elementami architektury został bardzo szczegółowo opisany za pomocą diagramów 
przepływu. Badania za pomocą modelu symulacyjnego zostały wykonane poprawnie pod 
względem metodologicznym. Doktorant dobrze zaplanował eksperymenty symulacyjne, dla 
każdego punktu pomiarowego wykreślając średnią ze 100 uruchomień symulacji i odznaczając 
na wykresie przedziały ufności, co pozwala oszacować zakres błędów. W rozprawie nie 
opisano wystarczająco precyzyjnie w jaki sposób dokonano walidacji środowiska 
symulacyjnego np. poprzez porównanie z pomiarami wykonanymi w środowisku emulacyjnym 
opisanym w rozdziale 5, jednak wyniki przedstawione w rozprawie nie wskazują na błędy w 
jego działaniu. 
 
Istotnym elementem badań w pracy doktorskiej jest zastosowanie uczenia maszynowego do 
sterowania działaniem aplikacji w sieci brzegowej. Doktorant dobrze dobrał metodę uczenia 
ze wzmocnieniem, tworząc model oparty na algorytmie Proximal Policy Optimization (PPO). 
Wybór tego algorytmu jest adekwatny do problemu rozwiązywanego w rozprawie i doktorant 
rzetelnie przeanalizował sposób doboru hiper-parametrów. Metodologia doboru zbiorów 



uczących i sposobu uczenia poprzez wykorzystane przez doktoranta wskaźniki KPI jest także 
metodologicznie poprawna.  
 

4. Analiza źródeł i stanu wiedzy 
 
Bibliografia rozprawy obejmuje odwołania do 107 artykułów naukowych, książek oraz 
standardów sieci 5G. Są to prace opisujące tło prowadzonych badań, w tym podstawowe 
koncepcje związane z architekturą sieci 5G, modelowaniem tych sieci oraz analizą 
efektywności sieci bezprzewodowych. Doktorant w rozdziałach 2 i 3 bardzo szczegółowo 
opisał sposób realizacji przetwarzania w modelu „edge” w ramach standardów 5G, odwołując 
się do dobrze dobranych prac w dziedzinie. Również tło w zakresie badań nad systemami 
przetwarzania brzegowego zostało dobrze oddane w rozprawie, od odniesienia się do nowych 
przypadków użycia dla sieci 5G proponowanych przez organizacje standaryzacyjne, po 
przegląd prac związanych z zastosowaniem optymalizacji do sterowania przetwarzaniem w 
systemach brzegowych. Cytowane prace są związane z tematem rozprawy, a odwołania 
zostały umieszczone adekwatne do treści pracy. Przegląd literatury został opisany w sposób 
wyczerpujący i świadczy, że autor dogłębnie przeanalizował stan wiedzy i przed 
przystąpieniem do tworzenia własnych algorytmów dobrze zapoznał się z informacjami na 
temat opisanych wcześniej metod optymalizacji i sterowania działaniem aplikacji na 
serwerach brzegowych sieci bezprzewodowych.  
 

5. Poprawność redakcyjna rozprawy 
 
Rozprawa została przygotowana w sposób bardzo staranny i nie zawiera znaczących błędów 
językowych lub redakcyjnych. Rozprawa jest napisana w sposób czytelny i zrozumiały. Sposób 
organizacji treści w pracy nie budzi zastrzeżeń.  
Za niewielką wadę redakcyjną rozprawy można jedynie uznać sposób przygotowania części z 
rysunków, w których umieszczono część z opisów w sposób nieczytelny lub mało zrozumiały. 
Np. diagram przepływu wiadomości na rycinie 4.1 zawiera nazwy (np. „4. Nudr_DM_Notify”) 
które nie zostały omówione w prace i pochodzą wprost ze standardu, z którego został 
zaczerpnięty, a jego zrozumienie wymaga sięgnięcia do dokumentu źródłowego. Opis części 
obiektów na rysunku 8.3 jest tak mały, że odczytanie liter jest możliwe jedynie przy użyciu 
lupy. W/w drobne wady jednak nie umniejszają wysokiego poziomu redakcyjnego całości 
rozprawy. 
 
 

6. Wartość naukowa rozprawy 
 
 
Praca dotyczy bardzo aktualnej tematyki naukowej i stanowi istotny wkład w rozwiązanie 
problemu efektywnego doboru węzłów brzegowych do realizacji przetwarzania w modelu 
Edge Computing oraz opracowania algorytmów sterujących migracją aplikacji. Doktorant 
dobrze zidentyfikował niszę w prowadzonych badaniach nad systemami przetwarzania 
brzegowego. Koncentrując się na algorytmach sterujących relokacją aplikacji podjął badania o 



nowatorskim charakterze, w obszarze, w którym liczba dostępnych metod opisanych w 
literaturze jest niewielka. Praca doktorska nie jest prostą adaptacją znanych rozwiązań do 
nieznacznie zmodyfikowanego problemu, lecz stanowi odpowiedź na realną potrzebę 
badawczą. Analiza literatury naukowej zawarta w pracy potwierdza, że doktorat stanowi nowe 
rozwiązania problemu naukowego. 
 
Doktorant w rozprawie przedstawił 2 metody rozwiązania problemu relokacji aplikacji 
brzegowych w odpowiedzi na mobilność użytkowników: klasyczny algorytm heurystyczny 
(zaimplementowany w kilku wersjach) oraz metodę opartą na uczeniu ze wzmocnieniem. 
Potwierdza to, że doktorant dysponuje odpowiednim warsztatem naukowym i jest w stanie 
opracować algorytmy o różnym charakterze. Analiza wydajności dla wszystkich algorytmów 
została przeprowadzona bardzo rzetelnie. Doktorant przeprowadził badania dla różnych 
parametrów związanych z opóźnieniem transmisji i dla różnych wielkości sieci oraz ocenił 
skalowalność opracowanych metod w zależności od liczby aplikacji. W doktoracie także 
oszacowano złożoność obliczeniową (czas wykonania) poszczególnych algorytmów, co 
pozwala oszacować wpływ realizacji obliczeń na wydłużenie procesu relokacji. Wszystkie te 
elementy świadczą o dużej rzetelności prowadzonych badań oraz wiarygodności 
przedstawionych w rozprawie wyników. 
 
Prace przedstawione w rozprawie doktorskiej były elementem 3 publikacji naukowych, w tym 
jednej opublikowanej w renomowanym czasopiśmie IEEE Communication Magazine oraz 2 
artykułach opublikowanych w materiałach konferencyjnych uznanych konferencji 
międzynarodowych: IEEE International Conference on Communications (ICC) i IEEE Global 
Communications Conference (Globecom). Świadczy to o wysokiej jakości prowadzonych 
badań.  
 
 
 

7. Możliwość praktycznego zastosowania wyników badań 
 
 
Wyniki badań zrealizowanych w ramach pracy doktorskiej mają bezpośrednie zastosowanie w 
praktycznym zarządzaniu sieciami komórkowymi 5 generacji. Istotny aspekt praktyczny mają 
algorytmy relokacji aplikacji w systemie przetwarzania brzegowego, które można wdrożyć w 
systemach zarządzania węzłami brzegowymi. Wyniki analizy porównawczej algorytmów w 
wersjach kładących nacisk na opóźnienie, równoważenie obciążenia lub metod opartych o 
uczenie maszynowe pozwalają dopasować algorytm do specyfiki zastosowania danej sieci i 
dobrać odpowiednią metodę pod kątem minimalizacji prawdopodobieństwa odmowy 
przełączenia aplikacji lub pod kątem minimalizacji częstości przełączeń. Bardzo istotny aspekt 
praktyczny ma także opracowane przez autora i opisane w rozdziale 5 rozprawy środowisko 
„proof of concept”, w którym można uruchomić i przetestować w warunkach laboratoryjnych 
działanie metody przenoszenia aplikacji pomiędzy serwerami brzegowymi. Operator sieci 5G 
może wykorzystać opisaną w pracy metodę budowania środowiska emulacyjnego do 
weryfikacji i przetestowania funkcji przetwarzania brzegowego przed ich wdrożeniem w całej 
sieci.  
 



Możliwość praktycznego zastosowania wyników badań została potwierdzona licznymi 
prezentacjami wyników pracy doktoranta na konferencjach branżowych, m.in.: KubeCon 2022 
w Valencii, "Telco at Edge Days" podczas konferencji KubeCon 2023 w Amsterdamie oraz 
podczas Orange Open Tech Days w Paryżu w 2023 roku. Należy zwrócić uwagę, że doktorat 
został opracowany we współpracy z jednym z największych operatorów sieci komórkowych w 
Polsce – firmą Orange, a jego tematyka jest bezpośrednio powiązana z nowymi usługami 
rozwijanymi w sieciach komórkowych przyszłości. Dlatego istnieje bardzo duża szansa, że 
wyniki prac doktoranta zostaną w praktyce zastosowane w sieciach obsługujących miliony 
użytkowników.  
 

8. Uwagi krytyczne 
 
Istotna część badań efektywności algorytmów przeniesienia aplikacji pomiędzy serwerami 
brzegowymi zależy od przyjętego sposobu odwzorowania mobilności użytkowników. W 
środowisku symulacyjnym opisanym w rozdziale 6 rozprawy wskazano, że zaimplementowano 
jedynie prosty model mobilności użytkowników zakładający, że mogą oni przemieszczać się 
pomiędzy sąsiednimi komórkami z równomiernym prawdopodobieństwem. Może to 
prowadzić do nierównomiernego obciążenia komórek, z większym prawdopodobieństwem 
przełączenia użytkownika do komórek znajdujących się w centrum sieci, podobnie jak ma to 
miejsce w modelu „Random Waypoint”. Czy zweryfikowano równomierność obciążenia sieci i 
czy ma to wpływ na wyniki przeprowadzonej analizy np. prawdopodobieństwa odmowy 
przełączenia aplikacji? 
 
Doktorant używa modelu symulacyjnego w znacznej mierze bazującego na opracowanych 
samodzielnie elementach. W jaki sposób zweryfikowano poprawność działania symulatora i 
czy spróbowano porównać działanie modelu symulacyjnego dla prostych topologii z 
działaniem środowiska „proof of concept” opisanego w rozdziale 5? 
 
W przeprowadzonych analizach skoncentrowano się na algorytmach dokonujących próby 
przełączenia jedynie pojedynczej aplikacji, a parametrem użytym do oceny jakości działania 
algorytmu jest współczynnik odrzuconych prób przeniesienia (ang. relocation rejection rate). 
Naturalną odpowiedzią na ten problem wydaje się przeniesienie innych aplikacji w celu 
zwolnienia miejsca na serwerach brzegowych położonych w miejscu docelowym, lub 
równoważenie obciążenia poprzez przełączenia aplikacji realizowane nie tylko w odpowiedzi 
na mobilność użytkowników, ale także w sposób proaktywny, np. poprzez okresowe 
uruchomienie w celu przeniesienia aplikacji możliwych do przeniesienia do serwerów o 
niższym obciążeniu. Dlaczego w planach dalszych prac w rozdziale 9.2 skoncentrowano się na 
praktycznych aspektach (np. wsparcie migracji aplikacji stanowych), a pominięto aspekt 
możliwej poprawy metody zarządzania migracją aplikacji poprzez w/w rozszerzenia? 
  



9. Podsumowanie i ocena końcowa 
 
Praca doktorska pt. „Application relocation in an Edge-enabled 5G-system” została 
przygotowana przez Pana magistra Grzegorza Piotra Panek rzetelnie i wykazuje zdolność 
kandydata do prowadzenia pracy naukowej w sposób samodzielny. Praca jest poprawna pod 
względem metodologicznym, a opracowane algorytmy relokacji aplikacji pomiędzy węzłami 
brzegowymi w odpowiedzi na mobilność użytkowników są nowatorskie i zostały rzetelnie 
przeanalizowane. Badania w zakresie zastosowania uczenia maszynowego ze wzmocnieniem 
do optymalizacji przełączeń aplikacji w systemie przetwarzania brzegowego sieci 5G 
wykraczają poza stan wiedzy, ale mają także bezpośrednie zastosowanie praktyczne. Badania 
zostały poprawnie zaplanowane i zrealizowane, a ich wyniki szczegółowo i precyzyjnie 
opisane. Praca tym samym potwierdza, iż kandydat posiada wymaganą wiedzę teoretyczną w 
dyscyplinie Informatyka Techniczna i Telekomunikacja.  
 
Stwierdzam, że recenzowana rozprawa doktorska Pana Grzegorza Panek spełnia warunki 
określone w art. 187 ust. 1 i 2 Ustawy z dnia 20 lipca 2018r. Prawo o szkolnictwie wyższym i 
nauce (Dz.U. 2018 r., poz. 1668 z późn. zmianami) i wnioskuję do Rady Dyscypliny Informatyka 
Techniczna i Telekomunikacja Politechniki Warszawskiej o dopuszczenie Pana Magistra 
Grzegorza Panka do dalszych etapów przewodu doktorskiego. 
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Application relocation in an Edge-enabled 5G-system

ABSTRACT

With the growing development of 5G networks and its new services, Edge Computing is

becoming the cornerstone of the ongoing network transformation. Its integration into 5G

network brings new research opportunities related to the design and implementation of high-

performance system, enabling the accomplishment of the three main promises of 5G network:

very high throughput, low latency, and massive connectivity. This development has generated

strong interest in realizing effective life cycle management of low latency-sensitive Edge ap-

plications in order to achieve a high level of QoS while ensuring the service continuity in the

case of user mobility. This thesis deals with the relocation of Edge applications, commonly

called Edge Relocation, which aims to relocate Edge application instances between Edge Hosts

in order to ensure uninterrupted service in user-mobility scenario. To achieve our objective,

a cloud-native Edge-enabled 5G system compliant with ETSI and 3GPP standards has been

proposed. The contribution of this thesis is three fold.

Firstly, a proof of concept is presented. It demonstrates how Edge Relocation can be imple-

mented on the top of integrated 5G and Edge system to ensure service continuity in the case of

end user mobility or Edge infrastructure unavailability. Implementation of relocation mecha-

nisms involves utilizing and expanding open-source technologies contributing to the industrial

aspect of the thesis. Kubernetes, recognized as the standard for cloud-native application or-

chestration, is utilized and Edge Multi-Cluster Orchestrator (EMCO) solution that is providing

the capability of orchestrating Edge applications in a multi-cluster environment.

Next, two original algorithms are introduced. These algorithms are designed to identify a

suitable Edge Host for application relocation. The first algorithm adopts a heuristic approach,

consequently dividing the edge topology into sub-topologies and exploring them until an ap-

propriate Edge Host is identified. This approach is then compared with the final contribution of

this thesis, which use Reinforcement Learning to train a decision model. A detailed compari-

son is conducted, revealing the strengths and weaknesses of both solutions, providing valuable
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insights for telecommunication operators considering the deployment of Edge-enabled 5G sys-

tem.

Key words: Edge Computing, 5G network, cloud-native, Management and Orchestration,

heuristic algorithm, Reinforcement Learning algorithm
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Relokacja aplikacji w systemie 5G z przetwarzaniem brzegowym

STRESZCZENIE

Rozwój sieci mobilnych oraz związane z nim możliwości realizacji nowych, zaawan-

sowanych usług, otwierają nowe obszary badawcze w zakresie projektowania systemów

sieciowych, które umożliwiają realizację trzech głównych założeń sieci 5G, tj. bardzo duża

szybkość bitowa, bardzo małe opóźnienia oraz masowa łączność pomiędzy urządzeniami. W

szczególność, dynamiczny rozwój usług wymagających bardzo małych opóźnień komunika-

cyjnych, sprawił że przetwarzanie na brzegu sieci (ang. Edge Computing) stało się kluczowym

rozwiązaniem w trwającej transformacji sieci. Integracja systemu przetwarzania danych na

brzegu sieci z architekturą sieci 5G stawia nowe wyzwania takie jak np. efektywne zarządzanie

cyklem życia aplikacji brzegowych. Celem rozprawy było zaprojektowanie systemu oferującego

wysoką jakość usług (ang. Quality of Service) realizowanych na brzegu sieci, jednocześnie

zapewniając ciągłość świadczenia usługi w przypadku mobilności użytkownika końcowego.

W rozprawie skupiono się na procesie relokacji aplikacji brzegowych, który polega na prze-

niesieniu aplikacji pomiędzy serwerami brzegowymi, aby zagwarantować ciągłość świadczenia

usługi podczas mobilności użytkownika. Zaproponowane zostało rozwiązanie dla sieci 5G bazu-

jące na przetwarzaniu w chmurze oraz zgodne ze standardami organizacji ETSI i 3GPP. Przed-

stawiono trzy główne obszary badań prowadzonych w ramach tej rozprawy.

Początkowo zaprezentowano oryginalne rozwiązanie, demonstrujące procedurę relokacji

aplikacji brzegowej w środowisku 5G wzbogaconym o funkcjonalność przetwarzania na brzegu

sieci. Zbudowany w tym celu demonstrator umożliwia przetestowanie w praktyce mechanizmu

zapewniania ciągłości świadczenia usług w przypadku mobilności użytkownika końcowego lub

problemów z infrastrukturą serwerów brzegowych. Wdrożenie procedury relokacji obejmuje

wykorzystanie i rozszerzenie pre-komercyjnych rozwiązań o otwartym kodzie źródłowym: Ku-

bernetes jako narzędzie uruchomieniowe aplikacji brzegowych w środowisku chmurowym, oraz

EMCO jako orkiestrator i zarządca aplikacji brzegowych.
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Następnie zaproponowane zostały dwa oryginalne algorytmy mające na celu wybranie odpo-

wiedniego serwera brzegowego do relokacji aplikacji w przypadku mobilności użytkownika koń-

cowego. Pierwszy z algorytmów reprezentuje podejście heurystyczne, które dzieli topologię ser-

werów brzegowych na podzbiory, a następnie analizuje je aż do momentu znalezienia odpowied-

niego serwera. Natomiast drugi algorytm został opracowany z wykorzystaniem metody uczenia

maszynowego ze wzmocnieniem (ang. Reinforcement Learning) do trenowania modelu de-

cyzyjnego. Przeprowadzono oraz przestawiono szczegółowe porównanie zaproponowanych al-

gorytmów relokacji aplikacji, pokazując mocne i słabe strony obu rozwiązań, a także dostarcza-

jąc szereg spostrzeżeń do wykorzystania przez operatorów telekomunikacyjnych rozważających

wdrożenie takich rozwiązań do systemów 5G z przetwarzaniem na brzegu sieci.

Słowa kluczowe: przetwarzanie na brzegu sieci, sieć mobilna 5G, infrastruktura chmurowa,

orkiestracja aplikacji brzegowych, algorytm heurystyczny, algorytm uczenia maszynowego przez

wzmacnianie
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Chapter 1

Introduction

With the growing development of 5G networks and its new services, Edge Computing is be-

coming the cornerstone of the ongoing network transformation. Its integration into 5G network

brings new research opportunities related to the design and implementation of high-performance

systems, enabling the accomplishment of the three main promises of 5G network: very high

throughput, low latency, and massive connectivity. The convergence of 5G network and Edge

Computing has changed the technology landscape, ushering in a new era of innovative use

cases and accelerating the implementation of an intelligent, fully connected digital world at an

unprecedented pace. However, the stringent requirements coupled to the high dynamicity of

these new applications make their management and orchestration extremely challenging. The

mobility of end-users is a critical factor expected to significantly impact Edge operations. As a

result, Edge-enabled 5G systems face the daunting task of tracking moving users and meeting

their Quality of Experience (QoE) demands simultaneously, which presents a formidable tech-

nical challenge that must be addressed to obtain a truly seamless and ubiquitous user experience.

Telco stakeholders are urged to design innovative distributed systems implementing disruptive

operations in order to fulfill the dream of a fully connected, intelligent digital world. Such

new Edge-enabled 5G system should be capable of ensuring the orchestration of the deployed

Edge applications while maintaining their Quality of Service (QoS). Specifically, these afore-

mentioned systems must guarantee an uninterrupted communication with Edge Hosts when the

users are moving, by providing orchestration mechanisms such as Edge application relocation.

According to the 3rd Generation Partnership Project (3GPP) [10], Edge Relocation is one
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of the main issues that are also addressed by the European Telecommunication Standardization

Institute (ETSI) in the context of integrated MEC and the 5G network [8]. By Edge Relocation,

we refer to the ability to relocate the Edge application running on a source MEC Host to

a target MEC Host. Several Edge applications, leveraging 5G (such as: autonomous vehicles,

cloud gaming, eXtended Reality or Autonomous UAVs), may require to guarantee QoS, specifi-

cally, very low latency communication and high availability. Hence, the Edge infrastructure will

be highly stressed observing high load, or highly mobile users. In this perspective, it is very

important to support the migration of applications in order to ensure service continuity during

the mobility of the end-user or in case of source Edge Host performance degradation (e.g., lack

of resources, failure, etc.).

In this dissertation, we deal with the mobility impacts on operations in Edge-enabled 5G

system. We propose an original Edge Relocation solution that provides the capability to fol-

low moving users while jointly respecting their Edge applications’ latency and infrastructure

resource requirements. The contribution of this dissertation is three-fold:

• Firstly, Edge Relocation framework named 5G-Edge Relocator is designed and im-

plemented. It leverages Kubernetes, the de-facto standard for cloud-native application

orchestration and Edge Multi-Cluster Orchestrator (EMCO) solution [4] providing the

capability of orchestrating Edge applications in a multi-cluster environment. Proposed

framework relies on an ETSI and 3GPP compliant architecture, leveraging cloud-native

Edge-enabled 5G system [38, 1, 74]. It is responsible for the relocation of Edge applica-

tions between Edge clusters. It besides ensures the observability of the Edge and access

network infrastructures in order to select new Edge cluster destinations.

• Secondly, a relocation algorithm is proposed, named EAR-Heuristic (Edge Application

Relocation Heuristic), which supports the selection of the destination cluster while jointly

responding to the application requirements and load balancing the resource consumption

of the Operator infrastructure.

• Finally, another novel algorithm based on Reinforcement Learning is proposed to pro-

vide the selection of new Edge Host called EAR-RL (Edge Application Relocation Rein-

forcement Learning). Our proposed solution aims to achieve a balance between two key

objectives: maintaining QoS for Edge applications and obtaining load-balancing of Edge
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infrastructure. By achieving this balance, algorithm can ensure that Edge-enabled 5G

system operate efficiently, with minimal resource wastage and maximal QoE satisfaction

for end-users.

The PhD process has been carried out in an industrial mode as a collaboration between

Orange Innovation Poland and Warsaw University of Technology, with support from the exper-

tise of Orange France. The PhD candidate holds a position of Research Engineer at Orange

Innovation Poland and is pursuing their PhD at Warsaw University of Technology.

During the PhD process, three research papers related to Edge Relocation were prepared

and published them in: proceedings of IEEE Communication Magazine 2022 [74]; proceedings

of IEEE International Conference on Communications (ICC) held in Rome in 2023 [75] and

IEEE Global Communications Conference (Globecom) held in Kuala Lumpur in 2023 [73].

Additionally, we presented our industrial contribution and Edge Relocation implementation so-

lution at several industrial conferences, including: KubeCon 2022 in Valencia (demonstrating

the Proof of Concept of the EMCO feature for Edge Relocation prepared with Intel, which is

the originator of EMCO); "Telco at Edge Days", a co-located event of KubeCon 2023 in Ams-

terdam and during Orange Open Tech Days in Paris in 2023. The first contribution (described

in Section 5.4.1) that presents 5G-Edge Relocator has been published in IEEE Communica-

tion Magazine and at IEEE ICC Conference. The evaluation of heuristic algorithm, that states

a second contribution (described in Section 7.2.5) has been presented at IEEE ICC Conference,

while the algorithm based on Reinforcement Learning (third contribution described in Section

8.3.4) has been published at IEEE Globecom Conference. This dissertation also contains an ex-

tensive evaluation of the above mentioned algorithms that has not been published yet (such as

scaling evaluation described in Section 7.2.7 or RL non-masked approach introduced in Section

8.3.4).

This thesis is organized as follows: the chapter 2: Background introduces 5G and MEC

system, while indicating the complexity of integrating both systems. Next, in the chapter 3, we

describe the technology challenges observed in Edge Computing that we focus in this work.

Next, the chapter 4 presents related works that provides an analysis of the application migration

in Edge Computing problem, based on current state of the art. Chapter 5 describes the Edge Re-

location procedure within the Edge-enabled 5G system and offers a perspective on the proposed
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demonstrator. This Section represents the first industrial contribution of our work. In chapter 6,

we formulate the problem and present modelling of the environment. Next, in the chapter 7 we

introduce heuristic algorithm for selecting new Edge Host for user equipment in mobility sce-

narios and present the evaluation results. This is the second contribution of our work. Chapter

8 is dedicated for describing the third contribution, which is a Reinforcement Learning-based

approach for selecting Edge Host. Finally, in chapter 9, we provide a comprehensive summary

of all the activities considered in this thesis.
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Chapter 2

Background

This chapter introduces the background of 5G network connectivity, emphasizing its capability

to provide ultra-reliable low-latency communication. Next, we deep dive into architectural

view on 5G network and its integral enablers like Edge Computing. We clearly introduce the

challenge of life-cycle management for Edge Applications and demonstrate its usage in an

integrated 5G and MEC System. Finally, we present an overview of our motivation, driven by

growing number of use-cases, which requires mechanisms and algorithms to support session

and service continuity in proposed system.

2.1 5G network empowered mobile connectivity

The dynamic evolution of mobile communication since the 1980s has been driven by the grow-

ing importance of mobile networks in modern industries. The societal dynamics of each gen-

eration push forward the development of next generation mobile communication standards. In

this era of wired connectivity, mobile communication has become a part of our daily lives, what

facilitated plenty of services and allowed transforming the way how we interact with surround-

ing world. The continuous improvement of mobile networks has played a key role to enable the

explosion of new innovative services, that together with 5G technology, are ready for chang-

ing the telco landscape. The 5G mobile network, represents a notable improvements in terms

of available throughput, capacity, and reliability. 5G network has promised to realize a set of

game-changing capabilities, including:
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• Enhanced Mobile Broadband (eMBB) that provides significantly higher throughput com-

pared to 4G technology, targeted 20 Gbit/s for downlink and 10 Gbit/s for uplink [49].

• Massive Machine-Type Communications (mMTC) to guarantee the capacity to connect a

massive number of devices to the network [27].

• Ultra-Reliable Low-Latency Communication (URLLC) which ensures extremely low com-

munication latency in the range of few milliseconds [76].

This is a significant advancements for applications that require real-time or near real-time re-

sponses, such as remote surgery, autonomous vehicles, industrial automation, and augment-

ed/virtual reality. All mentioned 5G network features state key enablers for several new appli-

cations across various sectors, such as smart cities and Industry 4.0, healthcare, entertainment

services like virtual reality (VR), and beyond.

Figure 2.1: Edge-enabled 5G system
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2.2. ETSI BASED MULTI-ACCESS EDGE COMPUTING

5G technology introduces and integrates new techniques to achieve promised low-latency

communication. One of the key enabler for 5G network to realize URLLC is Edge Computing -

technology that has been standardized by the European Telecommunication Standards Institute

(ETSI) in a way to be widely used in mobile systems and finally named Multi-Access Edge

Computing (MEC) [40]. The MEC aims to process user’s data as close as possible to the end-

user, typically at the network’s edge. This entails attaching more computing servers closer to

the end-users at: an edge local data centers/clouds, or co-located within gNodeBs as presented

in Figure 2.1. Edge Computing plays a crucial role in enabling URLLC, while it offers as well

numerous advantages to telco operators, not limited to just reduce network latency:

• Bandwidth Efficiency: Edge Computing also reduces the volume of data transmitted

over long distances to reach centralized data centers, what results in bandwidth usage

savings and minimize associated costs.

• Reliability: MEC can improve service reliability by providing local failover options.

In case of network disruptions or failures in one location, Edge Hosts can continue to

operate, ensuring uninterrupted service for users.

• Low-Latency: It reduces the round-trip time for data transport to reach the processing

point due to the lower distance to network infrastructure, facilitating efficient near-real-

time data processing, essential for URLLC services.

• Security: MEC enables more granular control over user data. Data can be processed

locally instead of sending it to a central cloud, allowing for better control over data privacy

and reducing the risk of data exposure.

2.2 ETSI based Multi-Access Edge Computing

Edge Computing has been standardized by ETSI to make it accessible within different mobile

systems. This section presents the main concepts of MEC and its functional split based on

final reference architecture that has been published in 2022 [40]. MEC System, as presented in

Figure 2.2 is composed of three functional levels that can be grouped into MEC System level,

MEC Host level, and Access Network level.
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The MEC Host level comprises the MEC Host entity, which provides virtualization infras-

tructure (VI). VI delivers compute, storage, and network resources for MEC Applications. The

MEC Host includes a data plane responsible for data transport among applications, services, the

3GPP network, and other local or external access networks.

The MEC Platform provides a set of supportive functions for MEC Applications, such as: con-

figuration of internal DNS, instructing the MEC Host Data plane, or creating an environment

where MEC Applications can discover, advertise, consume, and offer other MEC services. Ad-

ditionally, MEC Host is managed by an entity responsible for tasks such as allocating, manag-

ing, and releasing virtualized resources in the virtualized infrastructure or preparing the VI to

run a software image.

The MEC System level management includes the MEC Orchestrator (MEO) as a core

component that maintains an overall view of the MEC System. The main MEO responsibility

is to:

• maintaining an overall view of the MEC System based on deployed MEC Hosts, while

Figure 2.2: ETSI based MEC reference architecture. Based on [40]
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monitoring available resources, available MEC services, and the topology of MEC Hosts;

• onboarding of application packages and communication with VI managers to instantiate

applications;

• selecting appropriate MEC Host(s) for application instantiation and/or relocation based

on a set of constraints, such as latency or available resources;

• triggering application instantiation, termination, relocation, and other life-cycle opera-

tions.

In addition to MEO, the management system layer also includes Operations Support System

(OSS) of an operator, which receives high-level request (often service-level requests), translate

them and finally transmit for execution to MEO.

The last, but not the least is the Access Network level. In order to allow end-users to

communicate within MEC System, particularly with MEC Applications installed at MEC Hosts,

they need to access the system through external Access Network, that can be either 3GPP based

4G/5G network, or any other type, including private, local, external networks, or even WiFi or

non-3GPP access.

It is worth noting that MEC System has been developed in complement to Network Function

Virtualization (NFV) concept [19], which offers several deployment options. One of them is to

to deploy it together with Virtual Network Function (VNF) on the same, common Virtualized

Infrastructure. Next, Management and Orchestration (MANO) [13] of VNFs can execute some

of the MEC management and orchestration tasks. It proves a strong synergy between the 5G

system deployment model (relying on NFV) and the potential deployment of MEC in similar

manner.

2.3 5G network architecture

This section aims at providing comprehensive overview of 5G network architecture and its key

components. It has been standardized by the 3rd Generation Partnership Project (3GPP) and

recently published in Release 17 (2022) [11]. The architecture of the 5G network represents an

evolution from previous generation of mobile networks. From its beginning, 5G network has

23



CHAPTER 2. BACKGROUND

been designed in a microservice based approach [101]. Such an approach imposes mainly in

decomposition of a large monolithic architecture of 4G network into Network Functions (NFs)

each performing, single, specific logical function. Similar to previous system of mobile com-

munication, 5G network architecture can be divided into following architectural parts: Control

Plane (called 5G Core), User Plane and Radio Access Network (New Radio in 5G standard).

The Control Plane (referred as 5G Core) has been designed with the principle of a Service-

Based Architecture (SBA) [82]. This design principle is depicted in Figure 2.3, where the

central point of 5G Core contains a common message bus which allows any NF to communicate

any other NF. This is useful for the future evolution of 5G Core, allowing new NFs to be easily

added to existing core functions. The architecture of the 5G Core, depicted in Figure 2.3,

highlights only the Network Functions that are either considered or utilized in our study.

Figure 2.3: 3GPP 5G Network Architecture. Based on [11]

• Access and Mobility Management Function (AMF) handles the UE’s management of

connection and mobility tasks such as authentication, authorization, registration and pri-

marily mobility management. It is also responsible for the selection of the session man-

agement function (SMF) which manages UE’s Packet Data Unit (PDU) session(s) [45].

• Session Management Function (SMF) is responsible for the creation, modification and

deleting of the PDU session and the allocation of the IP addresses to the end-user. Be-

sides, it selects and controls the User Plane Function.
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• User Plane Function (UPF) performs the packet routing and forwarding to the suitable

data network. Additionally, it provides local breakout capabilities for the traffic to be

routed to applications in edge locations.

• Policy Control Function (PCF) provides policy rules to the AMF and SMF functions to

ensure a fine granularity control of the authorized end-user’s flows. Precisely, the PCF

influences the traffic routing by passing new policies to the SMF in order to update the

PDU session based on the location of the end-user. SMF configures the traffic rules on

the serving UPF accordingly.

• Network Exposure Function (NEF) securely exposes services’ capabilities provided by

the control network functions (e.g., SMF, AMF, PCF) to the MEC System [58]. In doing

so, the latter can interact with the core network in the process of the PDU session update

by traffic steering rules reconfiguration. It also enables external AF an authentication

capability [58].

• Application Function (AF) AF is a generic term for any function that a telco operator

can connect to the 5G Core message bus to communicate with all other NFs. If the AF

is authenticated, it can communicate directly with other Core NFs; otherwise, it needs to

transmit all messages through the NEF, which acts as an authorization gateway to external

AFs.

• Unified Data Repository (UDR) is a centralized data repository for users’ information.

It plays role of a database where information such as: subscription data, subscriber policy

data, sessions, contexts, SIM identities are stored.

• Network Data Analytics Function (NWDAF) stands for a new approach for data col-

lection and analysis internally in mobile network control plane. It is mainly responsible

for subscribing for any data coming from NFs as stated in [50, 106], analyse according to

the defined policies and propose insights [28].

The architecture contains as well DN what stands for Data Network and represents any type

of Service Provider services, internet access or 3rd party services. In our study DN is considered

as MEC entity.
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The final element of the architecture is the Radio Access Network (RAN). It enables wireless

communication for users to connect 5G infrastructure and other part of network, such as the

internet, or any Data Networks. In the presented architecture RAN (Figure 2.3) is specified as a

single component without differentiation between multiple gNodeBs (5G NR base stations) or

the splitting of a Radio Access Functions, since it is not the focus of this thesis.

2.4 Integration of 5G network and MEC technology

As mentioned at the beginning of this chapter, the integration of MEC technology into the

5G network architecture is a key enabler for implementing URLLC service use-cases. This

section demonstrates how to interconnect both systems, which have been standardized by two

independent standardization bodies.

Figure 2.4: Integration of MEC technology and 5G architecture. Based on [6]

Two dimensions of both systems integration can be observed. First, integrating the 5G Con-

trol Plane and MEC System management requires interconnect of MEC Orchestrator and other

5G Core Network Functions. According to ETSI [6], a MEC Orchestrator can be served as an

Application Function to 5G Core. It means, if MEC Orchestrator is a trusted entity, it can be

directly configured as an AF. However, if the MEC Orchestrator is an untrusted entity, estab-

lishing an interconnection between the MEC Orchestrator and the Network Exposure Function

is necessary to grant authentication. The NEF serves as a gateway for communication when

exposing data from any 5G Core services.
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In the User Plane, user data is forwarded to the external Data Network, which, in assumed

architecture (Figure 2.4), is the MEC Host. This forwarding is possible by mechanisms im-

plemented in 5G system as functionalities of the User Plane Function (UPF), such as local

breakout or an Uplink Classifier. These mechanisms route traffic to specific Data Networks

within the Edge Infrastructure. Moreover, ETSI has defined several deployment models [6] for

UPF in MEC solution. As suggested, UPF has been deployed at Edge Provider’s infrastructure

to minimize latency by being deployed as close to the MEC Host as possible.

Both 3GPP and ETSI have developed several procedures to facilitate the above-mentioned

integration. These procedures encompass: a) MEC Orchestrator’s influence on 5G network

traffic steering to affect traffic routing and proper UPF (re)-selection, and b) MEC Orchestrator

requesting various resources from 5G NFs. AMF can provide MEC Orchestrator with a data

related to User Equipment (UE) mobility, while SMF can deliver PDU Session information.

Further details on these procedures are described in the following chapter 4.

2.5 Motivation for Edge Relocation

The deployment of 5G network is driving the growth of the Edge Computing market, which is

estimated to be $176 billion in 2022 [17]. Indeed, Telco stakeholders are investing in Edge Com-

puting to run new disruptive use cases related to industry 4.0, autonomous vehicles, extended

reality (XR), cloud gaming, etc. Therefore, they aim to harness the benefits of 5G network

alongside the Edge in order to monetize their highly performing infrastructures. However, the

proliferation of these new use cases leads to an exponential increase of mobile data traffic with

data rates in the magnitude of terabits per second, latency of milliseconds, and mobility speed

reaching 500 km/h [49]. To cope with this unprecedented growth driven by the emergence of

new services with more stringent requirements, Telco stakeholders are urged to design inno-

vative distributed systems implementing disruptive operations in order to fulfil the dream of a

fully connected, intelligent digital world.

Such new Edge-enabled 5G systems should be capable of ensuring the Management and Or-

chestration (MANO) of the deployed Edge services while maintaining their Quality of Service

(QoS) [24, 34]. Specifically, these aforementioned systems must guarantee an uninterrupted

communication with Edge Hosts when the users are moving. The radio-access handover proce-

27



CHAPTER 2. BACKGROUND

dure at 5G system side is well known and standardized by 3GPP [12], while a service continuity

for users’ connected to Edge architecture is a main subject of this work. Mobility of end users

requires set of Life-Cycle management operations done on Edge services in order to guarantee

uninterrupted communication between end-users and Edge Applications. This is where Edge

Relocation concept needs to be introduced.

According to the 3GPP [10], and ETSI, the Edge Relocation is one of the main issues ad-

dressed in the context of Integrated MEC and the 5G network [8].

By Edge Relocation, we refer to the ability to relocate the Edge Application running

on a source MEC Host to a target MEC Host [74].

Edge Relocation procedure may be triggered by several events, which can be either driven

by the 5G Core or the MEC Host, e.g.:

• (5G Core) The UE moves out of coverage area of serving MEC Host (source MEC Host);

• (5G Core, MEC) The QoS level decreases due to radio connection degradation;

• (MEC) The MEC Host is no longer able to host the application due to the lack of resources

(e.g., MEC Host overload, MEC Host failure).

The Edge Relocation is a key enabler of Edge-Enabled 5G system. Several Edge Appli-

cations, leveraging 5G network (e.g., autonomous vehicles, cloud-gaming, etc.), may require

strict QoS, specifically, very low latency and high availability. In this perspective, it is very

important to support the migration of applications in order to ensure service continuity during

the mobility of the end-user across the system or in case of source MEC Host performance

degradation (e.g., lack of resources, failure, etc.). It is worth noting that such a problem differs

with Edge Application offloading [99, 105, 104, 79], where the goal is to offload the application

workloads from User Equipment (UE) to Edge Hosts to allow better autonomy while improving

the application performance.
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2.6 Potential use-cases

The advent of 5G technology has driven the emergence of new use cases sensitive to latency.

Some of them such as e-health, video streaming, unmanned aerial vehicles, autonomous vehi-

cles, cloud-gaming and extended reality have, in addition, mobility needs [42]. To deal with the

aforementioned challenging requirements, it is important to use the MEC solution to perform

data processing or content delivery as near to the end-user as possible. Indeed, provided by

the operator through its infrastructure, the MEC can offer an ecosystem for efficient and seam-

less application mobility [32]. Envisioning an intelligent Edge-enabled 5G system is crucial

to achieve the targeted performances. As depicted in Figure 2.5, this system relies on several

geo-distributed MEC Hosts. MEC Hosts are part of the Edge cloud infrastructure which is

connected to the 5G Core network located in the Centralized Cloud.

Hereafter, we review the characteristics and requirements of use cases to which the Edge

Relocation could bring a real added-value.

2.6.1 Autonomus vehicles

Autonomous vehicles are seen as the most relevant service that 5G network will deliver. Self-

driving cars embed a set of sensors and cameras that are constantly processing the nearest

surrounding. The autonomous central car management system is characterized by low latency

communication (≈ 15 ms) in high mobility scenarios (C-V2X) [69]. Therefore, it requires to

be located as close as possible in order to guarantee an uninterrupted service continuity with

quick response time. In this perspective, the support of application relocation and user data

synchronization between MEC Hosts in order to manage and coordinate autonomous cars is

crucial [85].

In a smart city, autonomous vehicles rely on a network of sensors, cameras, and other nearby

infrastructure to traverse through their environment. These vehicles use advanced algorithms

and real-time data to interact with various entities in the city, to determine the most efficient

path to a particular destination. By analyzing data on traffic patterns, road conditions, and other

factors, the autonomous vehicle can choose the fastest or nearest route to avoid potential hazards

or disruptions, such as accidents or road closures due to construction. The communication delay

between nearby entities and the vehicles must be minimal to avoid any disruption in the vehicle’s
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Figure 2.5: Edge-enabled 5G system with exemplary use-cases

operation during its mobility. The autonomous central car management system is characterized

by low latency communication (≈ 15 ms) in high mobility scenarios (C-V2X) [69].

This communication enables the vehicle to maintain situational awareness of potential events

that may occur during its journey, and as needed, dynamically adjust its route to account for any

unforeseen circumstances. To minimize the delays that autonomous vehicles must tolerate when

dealing with both planned and unplanned events, one approach for such vehicles is to delegate

a portion of their computation to nearby external resources in the city to obtain real-time traffic

updates. Autonomous vehicles can deploy software modules on the available near entities to

gather, parse, and transmit pertinent information for navigation. These modules must ensure

that communication delays between the car and the remote modules are minimal to avoid any
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disruption in the vehicle’s operation, especially that the vehicle is mobile continuously. To ad-

dress the communication challenge of autonomous vehicles in a smart city, 5G-coupled Edge

Computing is essential. Edge Combined to 5G network offer additional hosting and execution

resources for applications in close proximity to both data sources and end-users, in contrast to

the internet backbone, where cloud providers are located at a distance. By leveraging Edge

Hosts, autonomous vehicles are supervised by the infrastructure reducing hence the congestion

and making the traffic more smoothly. In this perspective, the support of application reloca-

tion and user data synchronization between MEC Hosts in order to manage and coordinate

autonomous cars is crucial [85].

Among others use cases, we leverage autonomous vehicles to validate the feasibility of our

solution, where we select the distant supervision module while considering the mobility of ve-

hicles.

2.6.2 Drones

Unmanned aerial vehicles (UAV) are among the most beneficiary services of MEC. Drones

steering system requires short response time (≈ 30 ms) to be guaranteed by computation re-

sources at the Edge of the network. Edge Relocation is a key enabler MEC feature to achieve

full automation of drones piloting. It makes it as useful as never before and gives opportunity to

offer new services based on autonomous flying vehicles [86, 68]. UAVs are used in military sec-

tor for remote reconnaissance in high-risk areas. Drones are also widely used for security sector,

to monitor cities, protection of properties and continuous boarder patrolling. Edge Computing

allows for continuous images analysis in MEC Host in order to detect emergency cases.

2.6.3 Video Streaming

Video streaming services is experiencing significant growth in popularity. The continuous de-

velopment of mobile networks allowed to transmit high quality video on demand (VoD). MEC

Hosts allows to store the video content at the Edge of network in order to reduce large amounts

of data to be transferred through the entire network and to guarantee latency constraints (≈ 100

ms) even for ultra-high definition (UHD) video [69]. Edge Relocation is a support feature to

utilize the ’follow me’ procedure [71] for streaming services to keep video content as close as
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possible to the end-users. It is especially relevant in mobility scenarios such as watching videos

in high-speed rails or in fast moving cars.

2.6.4 Cloud-Gaming

Cloud-gaming is shaping up to be the disruption of the computer game market. The main idea

behind this emerging service is to run the game on a cloud server and stream the rendered

video to the client [23]. In doing so, the end-users do not need to have high-end performance

equipment to run the games anymore. However, such a service is extremely sensitive to network

latency. Indeed, some game types (e.g. First Person Shooter) [7] require a delay of 10 ms or

less from user operation to screen display. However, during the end-user mobility, this delay

constraint can be easily violated since the MEC Host, hosting the cloud-gaming application,

becomes increasingly far. Such a distance, especially in the case of high end-user speed, may

cause additional latency, inducing QoS degradation.

2.6.5 Extended Reality (XR)

eXtended Reality (XR) is a concept that allows to combine real, physical view of environment

with additional digital objects. Special headset or glasses facilitate daily routine by displaying

visual objects or playing audio messages. The following examples of XR usage are strongly

related with user mobility and require enabling Edge Relocation in order to guarantee service

continuity. XR technique may support people with visual or hearing disabilities to simplify

moving around in public spaces, making shopping or just sightseeing [93]. Augmented Reality

may navigate people around city, or translate and display phrases from the mouth movement by

recording and processing in real-time [61]. Extended Reality may also help drivers by notifying

about road hazards, or support people working at huge industrial territories, e.g. docks, airports.

Taking into account the heterogeneity of the latency requirements from 10 ms to 100 ms

for the discussed use cases, it is necessary to propose smart Edge Relocation solutions that will

ensure service continuity.
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2.7 Conclusions

Integration of MEC and 5G network technologies represents a significant advancement in mod-

ern telco networks. This synergy enables low-latency and reliable communication, opening

the stage for development of a wide range of innovative applications across various sectors.

Use-cases such as autonomous vehicles and drones, video streaming and cloud-gaming in high-

speed railways, or extended reality will benefit greatly from this technology convergence. These

use-cases demand low latency and high availability, which can be achieved through the efficient

utilization of Edge resources and the support of Edge Relocation.

The proposed integration architecture of MEC technology and 5G network does not im-

plement (therefore does not satisfy) all the requisite MEC interfaces as specified by ETSI. To

avoid any misuse of the term "MEC system", the alternative term "Edge System" is used in this

context in the rest of this thesis. If we are describing a system based on ETSI standards, we

would use the term "MEC", however, when referring to our specific implementation, we would

use "Edge Computing".

The concept of Edge Relocation assumes seamless migration of Edge Applications between

Edge Hosts to provide Service and Session Continuity (SSC). This capability is crucial enabler

for ensuring uninterrupted and reliable services in mobility scenarios. Such a mechanism has

been designed and implemented as a part of industrial contribution of this thesis and is presented

in section 5.

It is expected that coupling Edge Computing and 5G network should ensure Quality of

Service for latency-critical services. This expectation brings new research opportunities for 5G

network and beyond that are described in next chapter 3.
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Chapter 3

Edge Computing: technological challenges

and open research issues

The current status of Edge Computing development and its standardization (Multi-Access Edge

Computing) brings several challenges related to the service continuity of Edge Applications [16].

ITU-T presents the strategy for Network 2030 that specifies new use-cases enabled by MEC

and new services implemented at the edge [91]. Most of these use-cases consider user mobility.

In this perspective, Edge Relocation is a key enabler. Hereafter, we give an overview about

challenges and open research issues to be addressed to support service continuity in the Edge-

enabled 5G system. As explained in the previous chapter, we use the term "Edge" instead of

"MEC" to refer to the broader technology concept of Edge Computing.

3.1 Granularity of Edge Hosts distribution

Designing of Edge-enabled 5G system requires careful planning in terms of location density

of Edge Host. To assure end-to-end latency for latency-sensitive applications it is desirable to

position Edge Hosts in close proximity to gNodeBs. However, the real-world implementation of

a geo-distributed Edge Computing system involves significant capital expenditure (CAPEX) for

telecom operators when considering the deployment of individual Edge Hosts everywhere. The

solution lies in finding a balance between system performance and effectiveness and investment

possibilities. This challenge can be divided into two sub-challenges. First, is a multi-level
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classification, this means categorizing Edge Hosts into near-edge, far-edge, and central-edge

categories in order to increase its deployment efficiency. Secondly, the capacity planning for

each Edge infrastructure level is essential. It allows to determine the number of needed hosts

and their overall capacity. Such a specification should follow numbers of expected users and

estimated number of applications to be deployed.

3.2 Observability of Edge-enabled 5G system infrastructure

Observability is a cornerstone of the Edge Relocation approach ensuring insightful analysis of

the Edge-enabled 5G system in order to provide an adequate Quality of Experience (QoE) [95].

Observability refers to the activities involving the measurement, collection and analysis of the

various diagnostic signals that are fed back in real-time from both the cloud infrastructure and

the applications running on it [53]. We recall that the Edge Relocation can be triggered mainly

by two kinds of events: i) the mobility of users and ii) the degradation of the hosting Edge

Host performances. That is why a joint observability of Edge-enabled 5G system infrastruc-

ture is required to provide an in-depth understanding of the network and application behaviors

anticipating any QoS/QoE degradation. In this context two-level observability is required: i)

Infrastructure-level including hardware (computing and memory resources, network topology)

and software (Hypervisor, OS, containers) and ii) application-level including Key Performance

Indicator (KPI) metrics and UE-mobility in order to derive statistical information about the UE

mobility, and generate predictive information about future events. The development and design

of a complementary observability system for Edge Computing systems presents a significant

technological challenge as stated in [95].

3.3 Distributed Edge Multi-cluster Networking

The geographically distributed Edge Hosts (called Edge Clusters in the implementation perspec-

tive), spanning across different regions, data centers, or even infrastructure providers, present a

research challenge in establishing efficient connectivity to guarantee uninterrupted communica-

tion among Edge services. To address this, a potential solution is proposed in the implementa-

tion of a multi-cluster (each cluster representing single Edge Host) service mesh [100, 36] — an
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infrastructure layer that contains service-to-service communication, observability, security ca-

pabilities across multiple Edge Clusters. This solution provide possibility of exploring features

such as: effective management and orchestration of network connectivity, service discovery,

traffic routing, and load balancing among services operating in geo-distributed Edge clusters.

3.4 Edge Multi-cluster Orchestration

The lifecycle management of Edge Applications is extremely challenging. Specifically, the

placement, the scaling, the relocation and the observability of container-based instances are

complex operations [63]. Unfortunately, the Vanilla version of Kubernetes [3] is not capable of

efficiently orchestrating composite applications deployed on thousands of Edge Hosts. Achiev-

ing a zero downtime [83] application relocation between Edge Hosts needs several adaptions of

Kubernetes to make it possible. Various Kubernetes based solutions for Edge Computing have

born such as KubeEdge1, Fleet2 and EMCO3; however, none of them supports the operation of

Edge Relocation.

3.5 Smart Edge Relocation decision

Coupling 5G network and Edge technology opens the opportunity to make use of 5G network

functions or Edge Orchestrator to provide efficient Edge Relocation decisions. Specifically,

NWDAF can leverage Artificial Intelligence (AI)-based approaches [90, 65] to run predictive

user-mobility analytics, anomaly detection and trends analysis based on a mobility data pro-

vided by SMF/AMF functions [15]. Therefore, two key challenges to utilize potential coming

from NWDAF is to define AI algorithms to follow and predict user mobility behavior (e.g.

autonomous vehicles or unmanned aerial vehicles) and specify a set of user-mobility and/or

QoS metrics to be measured and provided as an AI algorithm inputs. User mobility patterns

may specify the next sector of user localization with a high probability and provides detailed

information about timing constraints. Despite the complexity of single user mobility behavior

1https://github.com/kubeedge/kubeedge
2https://github.com/rancher/fleet
3https://github.com/open-ness/EMCO
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predictions, the Edge Relocation system may be highly effective and desirable especially for

emergency sensitive use-cases.

The self-learning ML-based algorithms are able to create user-mobility patterns to make

Edge Relocation decision in-advance. In consequence it provides time advantages for executing

zero downtime Edge Relocation process what can make Edge services ultra high reliable.

3.6 Edge synchronization

The use-cases presented in this thesis are considered to be handled as a both: statefull and

stateless services and might require a careful context transfer management and synchroniza-

tion across source and target instances. Telecom organizations need mechanisms to handle data

replication, synchronization, and consistency across clusters to prevent data inconsistencies,

conflicts, or stale information [67, 103]. Indeed, moving applications will have to be poten-

tiality available or synchronized over several Edge Hosts. Since data will be distributed, Edge

synchronization will ensure Edge Application data to be always consistent and tolerant to data

distribution [39]. Efficiently relocating the user context is challenging. To relocate at once a

whole package of user data during the Edge Relocation process what increase process dura-

tion, or to migrate only major part of user context before Edge Relocation and to update the

remaining fresh part in incremental mode.

3.7 Conclusions

This section concludes both: research and industrial challenges for making Edge Computing

for mobile systems industrialized and efficient in integrated 5G system.

The contribution of this thesis is threefold:

• To address the challenges of Edge Multi-cluster Management and Orchestration, we focus

on key operations related to the life-cycle management of Edge Applications, as depicted

in the blue circle in Figure 3.1. To do so, we have designed and developed a seamless pro-

cedure for relocating stateless applications between Edge Hosts. Our solution has been

pushed to the open-source Edge Orchestrator - EMCO (Edge-Multi Cluster Orchestra-

tor). Additionally, we have created a real demonstrator of an Edge-enabled 5G system,
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using open-source technologies in order to validate implemented procedure as shown in

yellow circle in Figure 3.1. It worth underlying that EMCO stands as a pre-commercial

solution provided by Orange for effective management of Edge infrastructure and ser-

vices [41]. This represents and proves the industrial application of the thesis, particularly

as the implemented Edge Relocation procedure has been integrated into the open-source

Edge Orchestrator and is currently in active use by EMCO. It is worth mentioning that our

demonstrator includes an observability framework, which allows for ongoing monitoring

of Edge Clusters to address the observability challenges in Edge Computing.

• To meet the challenge of making smart Edge Relocation decisions, as highlighted in the

red circle in Figure 3.1, we designed and implemented the "EAR" (Edge Application Re-

location) heuristic algorithm. It is aimed at selecting the best Edge Host while considering

resource usage optimization and minimizing latency. The evaluation of this algorithm in-

Figure 3.1: Composition of thesis subject
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cludes two parts: a) Testing it on the demonstrator mentioned in point 1. b) Conducting

performance tests on a original simulator of an Edge-enabled 5G system and comparing

the results with other optimal strategies.

In preparing exemplary Edge Host topologies for algorithm evaluation purposes, we care-

fully considered the challenge of granularity in Edge Host distribution.

• Finally, we design, implemented, and trained a Machine Learning model (Reinforce-

ment Learning) based on the Proximal Policy Optimization (PPO) algorithm to strengthen

smart Edge Relocation decisions. The objective of this algorithm is as well to determine

the best Edge Host. To evaluate this model, we also utilized the simulator mentioned in

the previous point and we made a comparison with the EAR-Heuristic and Optimal

approaches.

The first contribution of this thesis is related to the industrial mode of conducted research,

while the second and third contributions have a more scientific focus, nevertheless, they still

remain highly valuable for operational use.
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Chapter 4

Related work

In this chapter, we provide an analysis of the related work that addresses the support of Edge

services continuity focusing on Edge Relocation issue. Specifically, we concentrate on the

areas related to facilitating the deployment and management of cloud-native applications in geo-

distributed environments while considering the Edge Computing and mobile network context.

By examining the existing literature on this topic, we shed light on the various approaches and

solutions proposed in the literature to tackle this complex problem. We also deep dive into

related work of 5G standardization bodies to analyse the current state in defining procedures

that support Edge Relocation use cases.

4.1 Application relocation and service migration in Edge Com-

puting

Following the literature, the relocation problem can be resolved through three main approaches,

i) mathematical optimization models based on Integer Linear Programming (ILP) or Mixed

Integer Linear Programming (MILP), which are solved using optimization solvers [94, 21],

ii) heuristic methods [57, 86], and iii) Machine Learning (ML) approaches. Although exact

methods are capable of achieving optimal results, they often struggle to resolve large scale and

complex problem instances due to their time-consuming nature. In such scenarios, heuristics

and meta-heuristics approaches can be used to provide relatively "faster" but "sub-optimal" so-

lutions. However, the recent emergence of ML-based approaches with their interactive learning
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and decision-making abilities have garnered recognition for providing both accurate and rapid

solutions, making them a promising alternative to traditional optimization techniques.

4.1.1 Heuristic and Linear Programming optimisation

The work presented in [21] addresses challenges in Unmanned Aerial Vehicle (UAVs) commu-

nication using MEC technology as an enabler for low-latency 5G mobile network connectivity.

It proposes a proactive relocation approach using Linear Integer Programming based on UAVs’

predefined flight plans. The goal is to maximize the availability of UAV applications in the serv-

ing MEC Host while considering relocation time. The paper introduces decision variables (e.g.,

time required for the relocation and the distance between the current and optimal MEC Hosts),

constraints (e.g., elapsed relocation time), and linearization techniques for optimization.

Next, in [94] authors discuss the deployment and relocation of synchrophasor-based applica-

tions (PDC) in power grids. It introduces a cloud-edge architecture, virtual PDCs and an opti-

mization algorithm based on binary integer linear programming. The goal is to meet latency and

data completeness requirements of target applications in dynamic power grids. The proposed

framework monitors network performance (latency mainly), triggering optimal vPDC reloca-

tions to respect latency requirements.

In the category of the meta-heuristic methods, paper [71] presents ’follow-me’ approach in

MEC system as an optimization solution for dynamic service placement due to user mobility,

where the application is "following" end user. It proposes a mobility-aware framework aiming

to minimize user-perceived latency while considering a predefined long-term migration cost

budget. Heuristic based on the Markov approximation technique is proposed to handle the

NP-hardness problem. The key metrics considered for relocation decisions include: capacity

required by users at different MEC nodes, network propagation delay and data transmission

delay, and operational cost (bandwidth usage and energy consumption).

Another heuristic approach is presented in [57], in which the issue of limited resources in user

devices is presented. Authors consider MEC technology as a solution for large-size and latency-

sensitive applications, while analyzing user mobility and different users’ tasks dependency for

workloads offloading to MEC Host. They proposed heuristic algorithm that aims to minimize

workloads completion time in MEC Host by jointly considering these factors. The study evalu-
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ates the algorithm’s performance through simulations, demonstrating its superiority over exist-

ing approaches.

4.1.2 ML-based methods

The category of ML-based methods have been the subject of several surveys that have exam-

ined the use of ML techniques for Edge Application relocation. Notably, [25, 35] have men-

tioned that the use of ML for distributed edge-cloud application migration remains an open area

that requires further research and evaluation. In this research work [89], authors try to solve

the problem of container migration. It was successfully tackled by using of Deep Q-Learning

(DQL) solution, where each node is equipped with its own DQL agent. Their system’s state is

composed of delay metric, power consumption, and migration cost, while the action space is

consisting of the set of nodes to migrate to. The action space was optimized by dividing the

fog nodes into three groups: under-, normal-, and over-utilization. Furthermore, the training

process proposed by authors was enhanced using Dueling Deep Q Networks (DDQN), which

in simple words assigns different priorities to transitions in the experience memory, what leads

to faster learning and greater stability. The really decent results of this solution demonstrate

that the DQL approach facilitates swift decision-making and significantly outperforms existing

baseline approaches, mainly in terms of delay, power consumption, and migration cost.

De Vita et al. in [96] developed a cutting-edge RL framework, that takes into account

the interaction between an intelligent agent and an IoT environment. The proposed algorithm

was designed to learn optimal policies during system development, with the ultimate goal of

optimizing application relocation across various Edge servers within the network slice. The

focus of proposed algorithm is primarily on improving latency and resource utilization in order

to make it a highly effective tool for optimizing IoT systems.

The authors of [43] have developed a highly effective solution to the problem of service

placement using a distributed deep reinforcement learning (DRL) approach. In particular, au-

thors utilized an Importance Weighted Actor-Learner Architecture (IMPALA) that relies on

actor-critic techniques. IMPALA addresses and fixes issue related to rapid adaptation and gen-

eralization existing in centralized DRL techniques. IMPALA is using an adaptive off-policy

correction mechanism that enhances convergence. To further improve performance, the re-
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searchers has used several recurrent layers to process temporal behaviors and utilized a replay

buffer to optimize the input sample quality. Additionally, in this paper autohrs utilize Directed

Acyclic Graphs (DAGs) approach to formulate IoT services, which supports the dependencies

between IoT services and reduces the complexity of the problem.

IMPALA addresses issues in centralized DRL techniques by employing an adaptive off-

policy correction mechanism, boosting convergence despite challenges in quick adaptation and

generalization.

In [98], authors put forth a novel hierarchical placement strategy for Edge Computing ser-

vice that is optimized for reducing network congestion. To achieve this goal, they utilized

Q-learning, a type of RL algorithm, to map tree services onto the physical network.

In paper [87] authors introduce the ML-enhAnced Edge Service OrchesTRation (MAE-

STRO) algorithm, utilizing NFV and ML for automated management and orchestration (MANO)

operations in V2X services. They are focusing on ensuring QoS for V2X services by Edge ser-

vices relocation, addressing challenges in 5G network and beyond. Real-life experiments on

Smart Highway and Virtual Wall testbeds (that relies on Kubernetes Edge infrastructure) in

Belgium validate the proposed algorithm. The MAESTRO algorithm combines Multi-Criteria

Decision-Making (MCDM) and Support Vector Regression (SVR) to make proactive ML-driven

decisions for Edge service relocation. It is important to note that authors relies on KPIs coming

from both: infrastructure (CPU, Memory utilization) and network (latency, bandwidth).

The focus of next paper [33] is on optimizing QoS in a mobile scenario with heteroge-

neous services and resource limits. The proposed Cyclic Deep Q-network-based Edge Service

Placement and Request Scheduling (CDSR) framework aims to find a long-term optimal so-

lution despite future information unavailability. The key contributions include investigating a

three-tier MEC network with vertical and horizontal cooperation, formulating the optimization

problem using Markov Decision Processes, and proposing a DRL-based framework to decouple

Edge service placement and request scheduling decisions. State representation contains infor-

mation including the availability of services, the location of end users, and the current load on

Edge servers.

Finally, the paper [56] addresses challenges in Edge Computing caused by the mobility of

end devices (vehicles) that leads to QoS degradation and interruptions in Edge services. The pa-

per proposes a framework for joint optimization of service migration and resource management
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in Edge Computing using reinforcement learning. Both proactive and reactive migration is con-

sidered, while Multi-Armed Bandit (MAB) methods are presented for solving the optimization

problem. The proposed framework is considering average latency and energy consumption as a

KPIs to make migration decision.

Service migration in Edge Computing and its complement like context migration have been

as well a study of several novel approaches beyond analysis of this study, like, e.g. blockchain-

based migration using deep reinforcement learning [81, 80] or service and data compression-

based migration [77].

4.1.3 Comparative analysis

Table 4.1 provides a summary of existing research work focusing on Edge services migration.

It shows various approaches in terms of type of algorithms, among which majority works re-

lies on machine-learning based solutions, what is seen as a tendency in recent years. However,

still classical linear programming and various heuristic approaches are also applied. It is worth

noting that none of listed research work comprehensively compares reinforcement learning and

heuristic approaches, considering aspects such as pros, cons, design, performance complexity,

and usage recommendations for telco operators, while it is a case of our work. The table also

outlines main criteria for relocation/migration decision, what allows us to indicate the consensus

based on a frequently used metrics. Additionally, table contains technology-related information,

such as integration of proposed Edge solution with access mobile network (4/5/6G) and consid-

ering end-to-end procedural complexity. This enables us to assess completeness of the proposed

solution. Finally, we examine the presence of cloud-native Edge infrastructure in the referenced

works. It can easily answer the question, whether the work is theoretical, or more pragmatical

including real-environment testing. This fact also specify whether the migration procedure it-

self was considered, and if feedback was applied into the design of decision systems, which is

a key aspect of telco environment.

Additionally, it is important to note that the migration of Edge workloads/applications is

also addressed as an issue of task offloading in Edge Computing, where workloads can be

offloaded between UE and Edge servers depending on the scenario. Several frameworks have

been proposed in this context [59][60][26][97]. Since Edge Relocation is different life-cycle
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management operation that primarily handles migration between Edge server instances, and

offloading is not a key topic of thesis, we do not include it into our analysis.

Table 4.1: Comparison of Edge Relocation methods

paper
type of

algorithm
metrics

integration with

mobile network

(4/5/6 G)

cloud-native

edge infra

[21]
linear integer

programming
user location (mobility)

only mentioned

no integration

only mentioned

no implementation

[94]
binary linear

integer programming

distance

(with respect to latency)
No

only mentioned

no implementation

[86] Lyapunov optimization

network delay

data transmission delay

bandwidth usage

energy consumption

only mentioned

no integration
No

[57] heuristic
resource usage (task dependency)

user mobility.
No No

[89] Deep Q-Learning (DQL)

communication delay

power consumption

mobile users movement

No
Yes, based on

Docker

[96] deep RL

number of UEs attached to the eNB

(that MEC Host is associated with)

location of the UE

integration with

4G simulator
No

[43] deep RL

CPU (cores, utilization, speed)

access bandwidth,

data rate of servers

access latency of servers

power consumption of IoT device

No No

[98] Deep Q-Learning (DQL)
link traffic loads

remaining edge node capacities
No No

[87]
ML: Support Vector

Regression (SVR)

CPU, Memory utilization

latency, bandwidth
Yes Yes

[33] Cyclic DeepRL
user location

current load on Edge servers
No Yes

[56] Multi-Armed Bandit (RL)
average latency

energy consumption
No No
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4.2 Standardization enablers for Edge Relocation

In the context of Edge Relocation we also analyzed related work of ETSI (already described in

Section 2.4) and 3GPP standardization. The 3GPP has introduced 3 types of providing Service

and Session Continuity (SSC) in 5G network. As stated in [11] the most advanced and efficient

for both user and network is SSC Mode 3, where the changes to the user plane are visible to the

UE, but the network ensures no loss of connectivity. A new PDU Session Anchor is established

before terminating the previous connection to guarantee service continuity. Satisfying SSC

mode 3 has become one of our design principals.

Figure 4.1: "Application Function influence on traffic routing" procedure, based on [12]

Additionally, we identified another enabler, which is 3GPP standardized procedure "Ap-

plication Function influence on traffic routing" that has been introduced in the Release 16 of

"Procedures for the 5G System" [12]. The term Application Function is a general term for any

function that can connect to the 5G Core message bus to communicate with all other NFs. We

assume Edge Orchestrator to be an exemplary AF. Mentioned procedure enables external en-

tities (first authorized through the Network Exposure Function), such as Edge Orchestrator to

influence on traffic routing in 5G network data plane. Edge Orchestrator can influence on 5G

Core to reestablish or modify existing PDU session(s) to route traffic towards new application
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instance, what ensures session continuity of end-to-end Edge Relocation procedure. As shown

in Figure 4.1, after the NEF authentication, the message is transmitted through 5G Data reposi-

tory (URD). Proper rules are created within PCF and next transmitted to Session Management

Function to update traffic rules accordingly in UPFs. We utilized the concept of "Application

Function influence on traffic routing" in the design process of our Edge Relocation procedure.

Next, we identified the 5G system’s capability to expose network function capabilities to

external AFs, as defined in [11]. As stated in 3GPP document, "The Network Exposure Func-

tion (NEF) supports external exposure of capabilities of network functions. External exposure

can be categorized as Monitoring capability, Provisioning capability, Policy/Charging capabil-

ity and Analytics reporting capability. The Monitoring capability is for monitoring of specific

event for UE in 5G system and making such monitoring events information available for ex-

ternal exposure via the NEF". We took profit from this capability of 5G standard for the Edge

Relocation case. The Edge Orchestrator is subscribed for AMF and SMF events, such as UE

mobility events and Incoming Handover events, what triggers initiation of relocation decision

process. Furthermore, if 5G system would be able to measure end-to-end user latency in com-

munication with data network (Edge Host), this information can also be transmitted from 5G

Core towards Edge Orchestrator.

The capabilities defined by 3GPP that were discovered we found really useful for the Edge

Relocation use case, since an external Application Function (like Edge Orchestrator) now has

the ability to directly interact with 5G Core, what is a key enabler for integration two indepen-

dent architectures of MEC and 5G network. It allows as well to design end-to-end procedures

for Edge Computing.

4.3 Conclusions

The problem of Edge Relocation has been already identified by several research work. How-

ever, no one has yet considered an end-to-end procedure that encompasses two integrated ar-

chitectures: ETSI-based MEC architecture and 3GPP-based 5G system. Several papers deal

with decision-making regarding relocation using different techniques. Our work focus on a

comparison between different approaches for solving the Application Relocation problem for

Multi-Access Edge Computing, specifically heuristic and machine learning approaches. This is
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not the case for any existing paper. Identifying the most relevant data from both infrastructure

metrics coming from the MEC system and end-user position and latency measurement consid-

ered from the 5G network side is as well not a case for mentioned papers. Our work deals with a

detailed perspective on the collecting needed data aligned with standards. Last but not least, our

Application Relocation process was validated in a PoC environment, including a cloud-native

Kubernetes-based Edge infrastructure, a multi-cluster application manager, and containerized

Edge services which is rare in existing works. Finally, since the beginning, we have designed

the system to be aligned with the 5G system procedures described in 3GPP standards.
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Chapter 5

Architecture and Industrial PoC

This chapter presents the first contribution of the PhD thesis. It primarily describes the results

obtained in a cooperation with Orange Innovation Poland emphasizing the industrial mode of

PhD process, adopting practical implementation in a form of the proof of concept (PoC). The

main goals to obtain were set as follows:

• Developing the architecture of an integrated Edge-enabled 5G system.

• Managing and orchestrating multiple distributed Edge Hosts based on pre-commercial

EMCO (Edge-Multi Cluster Orchestrator) system [4].

• Implementing seamless relocation of Edge Applications across Edge Hosts to provide

missing functionality identified as a key gap to industrialize and implement the EMCO

system into operational network.

• Building a PoC based on the given EMCO-managed Edge-enabled 5G system to confirm

operationalization of proposed Edge Relocation method.

All of the above-mentioned goals were recognized as significant industry challenges for telecom

operators to provide a resilient and high-performing Edge system, while ensuring support for

session and service continuity in the context of enhanced user mobility. The design and imple-

mentation considered all architectural and procedural recommendations from standardization

bodies such as ETSI and 3GPP.
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5.1 Edge-enabled 5G system architecture

The proposed architecture of Edge-enabled 5G system is illustrated in Figure 5.1. This archi-

tecture leverages 3GPP 5G network elements and the proposed Cloud-Native Edge System to

establish a versatile Edge-enabled 5G system architecture. The integration was done following

the recommendations outlined in ETSI and 3GPP architectures and deployment models [8][10],

as previously discussed in Section 2.4.

Figure 5.1: Architecture of the Edge-enabled 5G system

The functional entities of the architecture are divided into two groups:

• Edge-level entities enabling the lifecycle management of Edge Applications and specifi-

cally performing the Edge Relocation process.

• 5G network - level entities corresponding to the network functions deployed in the Radio

Access and Core Networks (i.e. RAN and 5G Core). In the following, we highlight only

the main network functions which are directly involved in the Edge Relocation process.

Edge-level entities: the cloud-native Edge System consists of an Edge Orchestrator and one

or more Edge Hosts.
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Edge Orchestrator is responsible for the life-cycle management of Edge Applications and

the Edge platform itself. Specifically, the orchestrator manages application’s state, keeps the

local topology of Edge Hosts and takes Edge Relocation decisions. Orchestrator is hosted by

the 5G Core network and treated as an Application Function (AF). If the Edge Orchestrator is

considered as trusted by the Operator, it is, then, allowed to interact directly with the relevant 5G

Core Network Functions (PCF, AMF and SMF). Otherwise, it communicates only with the NEF

function which handles communication with the network functions. The orchestrator requires

to retrieve various parameters from 5G Core network functions (e.g. SMF, AMF), such as UE

mobility events, PDU session events, QoS parameters to be able to make the Edge Relocation

decision. Then, the orchestrator can influence UE’s traffic routing by interacting with the PCF

and SMF to provide information on the new desired state.

The Edge Host consists of i) the Virtualization Infrastructure (VI), which offers compute,

storage, and network resources to the Edge Applications and ii) the Edge platform which pro-

vides several services to ensure an efficient deployment of Edge Applications on Edge Hosts.

Among mentioned services there are: Observability agent which monitors infrastructure

and informs Edge Orchestrator about current resources utilization, while supporting orches-

tration/placement decisions. The Application Mobility Service (AMS) supports applica-

tion data/context synchronization between multiple Edge Application instances run on different

Edge Hosts.

The Edge Applications are cloud-native [55]. They are implemented while making use of i)

stateless architecture, ii) microservices and iii) containers technology. They are disaggregated

into a set of small individual services, where each one is packaged and running in its own

container.

To provide a cloud-native environment, the Edge Platform relies on two layers: Container

as a Service (CaaS) and Platform as a Service (PaaS) [14]. The CaaS offers a complete frame-

work for deploying and managing container based Edge Applications. It incorporates several

interface plugins such Container Network Interface (CNI), Container Runtime Interface (CRI)

and Container Storage Interface (CSI) to support multiple implementations. The PaaS hosts

the Edge services including the Observability Controller, Topology Controller. Besides, it pro-

vides the set of tools and common services which can be required by Edge Applications and

services such as service mesh to expose various traffic capabilities (e.g., telemetry, policy, etc.),
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monitoring, logging and tracing to ensure the observability of Edge Applications, security, etc.

5G network-level entities were already introduced in Section 2.3. Here, we have included

additional information specific only to Edge Relocation.

Both SMF and AMF can provide several Key Performance Indicator (KPI) metrics and

end-user mobility events in order to derive statistical information about the UE mobility, and

generate predictive information about future events. SMF provides information related to the

UE handover and session state, while AMF provides more detailed information about user mo-

bility and QoS degradation. Mentioned metrics can be passed to the entity responsible for

determining wheter to relocate end users’ application or not.

Optionally, we have considered a Network Data Analytics Function (NWDAF) as a native

5G Core service for data collection and analytics. It retrieves data gathered from: i) other 5G

Core NFs, ii) applications, and iii) UE, so that it processes and ensures data analytics using

defined algorithms [46]. In doing so, it can trigger or suggest actions when necessary. In

consequence, an Edge Relocation decision can be performed, achieving a guaranteed UE’s QoS.

The NWDAF is subscribed for user mobility events, QoS indicators and other metrics exposed

by SMF/AMF. The data analytics module of NWDAF constantly analyses gathered data and

monitors defined connection parameters in order to detect given patterns.

In the designed and implemented architecture, we have decided to shift the responsibility for

data collection, aggregation, analysis, and ultimately the decision-making process for relocation

to the Edge Orchestrator. It is more in line for the Edge Orchestrator to make decisions regarding

the selection of the best Edge Host for relocation Edge Applications within the Edge system.

This approach avoids overburdening the 5G system with the task of making decisions for each

specific application deployed within the Edge System. As a consequence the 5G system’s role

is limited to two main functions: a) gathering information about UE (User Equipment) mobility

and b) reconfiguration data plane as a part of the Edge Relocation procedure.

Aligning more closely with the designed system, the Edge Orchestrator is now tasked with

making decisions regarding the selection of the Edge Host for relocating an Edge Applications

within the Edge system.
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5.2 Edge Relocation

As depicted in Figure 5.2, in an Edge-enabled 5G system, the Edge Relocation refers to the

capability of relocate a running Edge Application instance (and user context, in case of a stateful

applications) from one source Edge Host to a target Edge Host to deal with QoS degradation.

Figure 5.2: Edge Relocation procedure

Besides, to ensure the service continuity of UEs, the Edge Applications which can be ei-

ther statefull or stateless, should be considered during the Edge Relocation procedure [52]. In

particular, stateless applications do not store any session-related information; consequently, no

data synchronization is needed between instances during the Edge Relocation process. How-

ever, stateful applications store user or session related information. Hence, the replication and

synchronization of this data across multiple Edge Hosts is crucial to ensure service continuity.

Scenario depicted in Figure 5.2, covers an Edge Relocation procedure triggered to maintain

UE service continuity. In this scenario, the UE changes both its location area and its attached

RAN. Once a radio handover procedure is triggered, the new attached RAN (i.e., target RAN)

will transmit data throughout a UPF to a target Edge Host.
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As illustrated in Figure 5.2, scenario can be divided into three main phases: i) mobility detection

ii) application relocation and iii) data plane update. In particular:

• Mobility detection: Once the user changes its location and a handover is initiated (1),

the base station sends a location update to the AMF which forwards it to the SMF (2).

Next, SMF informs the MEO about user mobility and the handover trigger (3).

• Application relocation: The Edge Orchestrator takes the application relocation request,

while jointly considering UE mobility information and the Edge Hosts topology, and

then, optionally selects a target Edge Host (3). Next, Orchestrator informs the source and

target Edge Hosts (4a, 4b) of the incoming relocation actions. The relocation process is

performed (5) and if the application is stateful, the migration of the application’s current

state is assisted by the AMS of the source and target Edge Hosts. Then, the new appli-

cation running on the target Edge Host is synchronized with the latest state, and hence,

becomes ready to handle UE traffic. The Edge Orchestrator confirms to the SMF that the

Edge Relocation procedure on the ’Edge side’ has been completed (6).

• Data plane update: Once the finalization of the Edge Application relocation on the Edge

side is completed, SMF can complete the handover. SMF assisted by PCF takes in charge

i) the reselection of a new UPF through which the traffic will be routed to the target Edge

Host and ii) the re-establishment or modification of the PDU session (7).

5.3 Edge Relocation Procedure in Edge-enabled 5G system

This section aims at detailed description of Edge Relocation procedure in integrated 5G network

and Edge Computing System.

As illustrated in Figure 5.3, the Edge Relocation of an Edge Application performs as fol-

lows. First, the Edge Orchestrator (EO) pre-subscribes to the SMF for User Plane path manage-

ment events notification. Once a handover is initiated, the base station sends a location update

to the AMF (0a) which forwards it to the SMF (0b). Second, as soon as the notification trigger is

met, the SMF informs the Edge Orchestrator about the user mobility and the handover trigger.

This message is sent through NEF (1) and it is communicated to the EO (2). The SMF per-

forms operations in a sequential mode. It allows, first, the finalization of the Edge Application
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relocation on the Edge side and, then, the completion of the handover once the confirmation is

received. In the next step, the EO recognizes the application handling the UE session. The EO

takes the application relocation checks request, while considering the UE mobility information

and the Edge Hosts topology, and then, optionally selects a target Edge Host (3). The positive

decision triggers the main part of the Edge Relocation process. The EO checks that the Edge

Application is not already running on the target Edge Host. If it is the case, it deploys it (4).

If the application is statefull, the EO informs the source Edge Host (5) and then asks the AMS

(6) to prepare and transfer the application’s current state to the target Edge Host. It is worth

noting that the AMS of the source Edge Host communicates directly with the AMS of target

Edge Host. Next, the target Edge Host confirms the reception of the application state to the

EO (7). Then, the application running on the target Edge Host is synchronized with the latest

state, and hence, becomes ready to handle the UE traffic. The EO confirms to the SMF that the

Edge Relocation procedure at the Edge side has been completed by sending a traffic influence

request to reselect the UPF. This request goes through the NEF (8), is stored by the local UDR

(9) and transmitted to the PCF. The latter formulates new policy rules (10), which are applied

to the SMF (11). The SMF takes in charge i) the reselection of a new UPF though which the

traffic will be routed to the target Edge Host and ii) the re-establishment of the PDU session

(12). Finally, the EO checks whether the application is still needed on the source Edge Host. If

it is the case, the EO triggers the application’s uninstall and release resources (13).

5.4 Demonstrator perspective - Proof of Concept

In this section, we give insights on our 5G-Edge Relocator, an innovative PoC framework for

Edge Application relocation. 5G-Edge Relocator leverages Kubernetes [3] and Edge Multi-

Cluster Orchestrator (EMCO) [4].

Let’s recall that Kubernetes is an open-source container orchestration platform that auto-

mates the deployment, scaling, and management of applications across clusters of hosts [2]. It

provides a robust system for organizing and running containerized applications, enabling effi-

cient resource utilization and high availability.

EMCO is also an open-source project for intent-based deployment of cloud-native applica-

tions [51] to a set of Kubernetes clusters spanning numerous edge locations. It aims to simplify
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Figure 5.3: Edge Relocation workflow for intra MNO - Scenario #3

the deployment and lifecycle management of distributed applications across multiple Edge clus-

ters (this is the implementation name of Edge Hosts), enabling efficient resource utilization and

improved scalability at the Network Edge.

Both solutions have been selected as a pre-commercial solutions for Orange to manage Edge

infrastructure and to orchestrate and monitor of Edge Applications. The aim of this contribu-

tion is three fold: i) to integrate EMCO with multiple Edge clusters, while validating EMCO

functionalities. Next, ii) the implementation of missing procedure of seamless Edge Appli-

cation relocation, and iii) finally integration with 5G Network and validation of implemented

procedure.

5.4.1 5G-Edge Relocator Framework

5G-Edge Relocator is a proposed modular framework coupling Edge and 5G network to ex-

ecute the relocation of Edge Applications on geo-distributed Kubernetes clusters (Edge Hosts).

To achieve its goal, our framework relies on an Edge-enabled 5G system to allow perform-

ing an end-to-end procedure of Edge Application relocation on the top of the proposed system.

5G-Edge Relocator extends EMCO to ensure the relocation of applications while jointly con-

sidering their requirements and the underlying Edge infrastructure status.
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Figure 5.4: 5G-Edge Relocator framework: Technology mapping

5G-Edge Relocator relies on the following building blocks:

• 5G system includes 5G control plane, 5G data plane and Radio Access Network (RAN). It

enables users to reach applications located at Edge Hosts. The 5G RAN and data plane are

responsible for transmitting data to the proper Edge Application, while 5G control plane is in

charge of managing and control the data plane. For implementation of 5G system we used

Towards5GS project that is containerized version of two projects: Free5GC - an open-source

implementation of 5G Control Plane and UERANSIM - an simulator of Access Network

integrated with simulator of end user.

• Edge Orchestrator - the cornerstone of our architecture. It acts as a management plane over

the set of Edge Hosts. Its main responsibility is to manage the life cycle of applications lo-

cated at Edge Hosts, including instantiation, scaling, healing and relocation between Edge

Hosts, to cite few.
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To achieve its goals, Edge Orchestrator relies on the following blocks:

Service Orchestrator - a key controller of the Edge Orchestrator. It is in charge of inter-

acting with Edge Hosts to execute LCM (Life Cycle Management) operations directly

on Edge Applications. This functional component has been represented by EMCO.

Placement Controller is empowered with an effective algorithm to find an appropriate

Edge Host based on (i) various constraints related either to the end user or the application

and (ii) information retrieved from the topology components, such as the Edge Host

load. This component is more described in the next section related to heuristic decision

algorithm. This component has been developed in the scope of this PhD thesis as an

extension to EMCO.

Edge-network Topology represents, as depicted in Figure 6.1, jointly the Edge Hosts’

topology coupled to the cells’ topology, the whole completed by the connectivity be-

tween them. This component as well has been developed internally as a extension to

EMCO. The Edge topology is organized into three levels: City, Regional and Interna-

tional and more describe in next section 6. The Edge-Network topology is fed by the

Observability Controller with up-to-date information about network performance, such

as latency at links, as well as state of used and available computing resources at Edge

Hosts.

Observability Controller encompasses two sub-controllers called network performance

controller and resource controller. i) The network performance controller observes

network-related metrics such as latencies at Edge-Network Topology links. Note that

the Edge-Network Topology and Observability Controller can provide the shortest path

between two given nodes of the topology based on Dijkstra’s algorithm, when requested

by the Placement Controller. ii) While the resource controller provides real-time mea-

surements of current utilization of Edge cluster computing resources (CPU and Mem-

ory). Resource controller was implemented based on centralized Grafana Mimir solu-

tion, that is subscribed for resource load changes at each of distributed Edge clusters

where Prometheus agents are responsible for exporting such data.

• Edge Host corresponds to the virtualized environment hosting Edge Applications. It has the
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capability to offload data to the destination Edge Applications. Moreover, it allows to route

data to other Edge Hosts [8]. Edge Hosts were implemented using Kubernetes clusters, where

a single, one-node cluster represents one Edge Host. Starting from this place we use "Edge

Cluster" name for Edge Host in terms of implementation use. Kubernetes and its accom-

panying CNCF (Cloud-native Computing Foundation) projects become de-facto a standard

for delivering an Edge cloud-native infrastructure (Rancher, ClusterAPI) and management of

workloads (docker, containerd), as described in following papers [44, 102, 37, 62].

5.4.2 Edge Relocation workflow

Figure 5.5: 5G-Edge Relocator workflow

Once a new Edge Application is deployed, a dedicated LCM workflow is started. First,

the workflow is subscribing to an Intermediate notifier (Figure 5.5, step 1), which allows

to subscribe for user mobility events (e.g., handover) directly from the Access and Mobility

Management Function (AMF). Once the AMF is detecting an end user handover, a location

report with the destination network cell identifier is passed to the LCM workflow (steps 2-3).

This information is next passed to the Placement Controller so that it selects the new Edge Host

to host the application (step 4). The Placement Controller runs the algorithm to identify the

Edge Host based on (i) the new end user position, (ii) the application requirements and (iii) the

Edge-Network topology status (step 5). If a new Edge Host has been identified, this information

is returned to the LCM workflow (step 6). Then, a new relocation intent for a given application

is prepared and provided to the Edge Orchestrator (step 7). The latter triggers the application

relocation procedure (step 8).
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5.4.3 Application relocation execution

The procedure of application relocation has been designed in a way to ensure the service conti-

nuity. Based on the relocation intent, the relocation workflow is triggered. This intent includes

the information required to successfully execute the operation, such as the application identifier

and the destination Edge Host. At the beginning, the new application instance is created, while

the old one is maintained until it becomes safe to delete it. Subsequentially, the process checks

the readiness of the new application instance leveraging the monitor agent located at each Edge

Host. Once, the new application is ready, a DNS system recovers the new application instance

and updates the DNS entry. In doing so, the end user traffic will be sent to the new application

instance. Finally, the old instance of the application is deleted, which allows resources saving

on limited Edge Hosts. The procedure of containerized application relocation from origin Edge

Host (Kubernetes cluster) to target one using top-level EMCO orchestrator has been entirely

designed, implemented and upstreamed to open-source EMCO project [4], as a response to the

industrial needs and telco operator requirements for Edge Application orchestrator.

5.4.4 Experimental environment

Our experimental platform relies on four R630 DELL servers with a pre-installed cloud manager

system - OpenStack Ocata. On the top, we have created 28 VMs with Ubuntu 20.04 LTS image

to host Kubernetes clusters. Then, we used kubeadm in order to deploy 25 Edge clusters on

the top of previously created VMs. 3 management clusters characterized by 1 master and 1

worker (4vCPU and 4GB RAM each) and 22 workload clusters characterized by one single node

playing jointly the role of master and worker. The management clusters have been dedicated

to host 5G-Edge Relocator components as depicted in Figure 5.5 while the workload clusters

host Edge Applications. Note that we are considering an Edge-Network topology composed of

only one coverage zone (as marked in red in figure 6.1). Among the workload clusters, (i) 16

belong to the City-level with a defined capacity of 4GB RAM and 4 vCPU, (ii) 5 belong to the

Regional-level characterized by 8GB RAM and 8 vCPU, and (iii) 1 belongs to the International-

level with 12GB RAM and 12 vCPU.

As described in Section 5.4.1, 5G-Edge Relocator is a modular framework relying on

micro-service based components. Some of them are fully implemented and others are adapted
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from open source projects. Specifically, the Placement Controller, Edge-network topology,

Observability Controller (based on Prometheus tool [9]), Intermediate Notifier are implemented

using GO language. The aforementioned components are enriched with various open source

projects: Kubernetes version 1.19.0, EMCO version 22.06 [4] and Towards5GS [5] projects.

We recall that Kubernetes is a cloud-native application orchestrator. Its clusters correspond to

the Edge Hosts of our framework. EMCO is an Edge Application orchestrator enabling the

deployment of applications in a multi-cluster infrastructure. Towards5GS is our open source

Kubernetes-based implementation of a 5G system. Further details about the implementation of

5G service can be found in our previous work [47].

5.5 Conclusions

The proposed Edge-enabled 5G system allows us to define an end-to-end Edge Relocation

procedure, including the interactions between the 5G control and data plane and Edge sys-

tem. We integrated and evaluated the open-source solutions for cloud-native infrastructure and

workloads management: EMCO and Kubernetes, both of which are Orange pre-commercial

solutions. The performed functional evaluation has been described in magazine paper [74].

Next, we designed and implemented the lacking procedure of seamless migration of container-

ized applications across multiple Edge Hosts (Kubernetes clusters), and upstreamed our code

to EMCO open-source repository. Lastly, we built Edge-Relocator Proof of Concept Frame-

work (demonstrator), integrating additionally open-source projects: Free5GC, UERANSiM,

and Prometheus. It allows us to perform end-to-end functional validation of the proposed pro-

cedure in 5G-network environment.

The above-mentioned efforts have helped Orange Poland to industrialize Edge Computing

technology by:

• possibility of commercializing and industrializing the pre-commercial EMCO Orchestra-

tor for the effective management of the distributed Edge Hosts infrastructure.

• reusing the implemented Edge Relocation procedure to support SSC in Edge Computing.

• reusing additional enhancements into EMCO, including Edge Topology registry and Place-

ment Controller.
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Additionally, considering the complexity of the targeted challenge, which involves building

an algorithm for selecting an Edge Host to relocate Edge Applications, we have acknowledged

that executing full-scale performance evaluations of proposed algorithms using the actual im-

plementation of an Edge-Relocator Framework (demonstrator) might be inefficient. The real

demonstrator faces several limitations such as: a) Topology scaling (limited infrastructure for

constructing larger, multi-cluster Edge topologies), b) Convergence time (real application relo-

cation consumes seconds, making performance execution tests lengthy). Given these limitations

of the PoC implementation, we have decided to additionally develop an Edge Relocation simu-

lator, as introduced in the next chapter.
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Chapter 6

Edge Relocation: Problem modelling

This chapter provides a presentation of Edge Relocation problem modeling and the problem

statement. We are going through: mathematical modeling of system elements, set of assump-

tions, requirements, constraints, and finally, objective functions. The proposed modelling is an

introduction to the algorithms investigated in the subsequent part of the thesis. Based on the

proposed modeling, we are presenting elements of Edge Relocation simulator and its assump-

tions.

6.1 Edge topology model

We model the Edge topology as an undirected graph G=(N,V ) as depicted in Figure 6.1. N

represents the Edge Hosts and V the links between them. Each node i ∈ N is characterized by

its (i) CPU capacity, Cap, (ii) available CPU, CPUi, (iii) Memory capacity, M (iv) available

memory, Memi and, (v) a cost µi depending on its level. Each link l ∈ V is characterized by

latency ψ(l). It is worth noting that Edge Hosts are in charge of hosting Edge applications and

forwarding traffic to others Edge Hosts [8].

We distinguish between three node classifications:

• Levels: each Edge Host belongs to a j level. We recall that a level could be a City-level

( j = 1), Regional-level ( j = 2), or International-level ( j = 3).

• Zones: Edge Hosts at the same level are grouped into Z zones (e.g., Warsaw, Gdansk, etc.)

depending on their geo-locations. We assume that all Edge Hosts belonging to the same zone
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Figure 6.1: Network and Edge Topology model

are directly connected (e.g., Edge Host 13 is connected to Edge Hosts 11, 12 and 14). In

addition, we assume that they are connected to their neighbors belonging to a different zone

within the same level (e.g., at City-level, Edge Host 13 is connected to Edge Hosts: 15 and

16). The links between levels are connecting Edge Hosts belonging to the same coverage zone

with the respect to their levels’ order. As depicted in Figure 6.1, the City-level is connected

to the Regional-level and the Regional-level is connected to the International-level.

A City-level is directly controlling a set of cells located within the same geographic area.

Recursively, Edge Hosts at level j are controlled by the ones at levels {l | l > j}.
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• Coverage zones: A coverage zone corresponds to a hierarchy of zones belonging to different

levels. We call such as subset of Edge Hosts K|K ⊂ N.

The Edge topology G is augmented by a Mobile Network Topology, Ga(Na,Va). Na corre-

sponds to the set of cell nodes. Va corresponds to the links between na ∈ Na and nb ∈ N. Note

that vb
a exists only if the Edge Host nb belongs to the City zone serving the cell na.

Each link l ∈Va is characterized by its latency ψ(l).

6.2 Edge application

As aforementioned, Edge Hosts are able to host one or more dedicated Edge applications. Ded-

icated application is serving to the single user. Each application a is characterized by its re-

quirements: CPU, memory and latency denoted req_CPU(a), req_Mem(a), and req_ψ(a), re-

spectively. We assume that an end user is characterized by a communication, e ∈ C between

itself and the Edge Host hosting its application. Note that for simplification purposes, we con-

sider that a communication is between a cell c, where the end user is located and the Edge Host

hosting its application.

6.3 Problem statement

We aim to find the appropriate Edge Host to relocate a given application while respecting its

requirements. For such a problem, we are considering the following constraints:

• Placement constraint: The placement decision is modelled by a binary variable xa,i, where

xa,i is fixed to 1 if the Edge application a is placed at the Edge Host i ∈ K, and 0 otherwise.

This constraint is formally defined as follows:

k

∑
i=1

xa,i = 1 (6.1)

• Resources and load constraint:

The available resources CPU(i) and Mem(i) of the selected Edge Host i ∈ K has to be greater
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than the requested resources by the Edge Application a. Also, the used resources by the hosted

applications should not exceed a certain threshold Xi in order to always leave an amount of

computation power for critical services such as emergency services. To achieve that, we need

to deduct ti amount of resources such as Xi = Capi − ti, where Capi represents the capacity

of the node i in terms of the aforementioned resource. We assume that τ corresponds to the

maximum of rate of resource usage which is expressed as follows: τ = Xi
Capi

. Note that for

simplification purposes, we express Xi for the CPU. But it will be the same reasoning for the

Memory. Hence, we define the following constraints:

 ∑
k
i=1 xa,i.req_CPU(a)≤CPUi − ti

∑
k
i=1 xa,i.req_Mem(a)≤ Memi − ti

(6.2)

• Latency constraint: Each application has defined end-to-end latency constraint that has to be

guaranteed by placing the application in an Edge Host, where the path to reach it is below the

end-to-end latency constraint assured for the application. Lets define the following notations:

– Pi j expresses the set of paths from a node c (i.e., cell) to another node (i.e., Edge Host) j,

(c, j) ∈ Na ×K.

– P denotes the set of all admissible paths. Formally, P =
⋃
{c, j}∈Na×K Pi j.

– βep is a binary variable indicating whether a communication e passes through the path

p ∈ P.

– ∆l p is a binary coefficient determining whether the physical link l ∈ V ∪Va belongs to the

path p ∈ P or not.

– (ss(e),sd(e)) ∈ Na ×K denotes the source and destination of a communication e, e ∈C.

We assume that a communication e between an end user ss(e) and an Edge Host sd(e) is

embedded in a physical path p ∈ Pc j between the cell c ∈ Na, where the end user is located

and the Edge Host j ∈ N. Formally,

∑
p∈Pc j

βep = 1, (6.3)

A communication e ∈ C must be hosted in a single path p ∈ Pc j. Such as ss(e) = c and

sd(e) is hosted in a node j ∈ N. Formally,
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∀p ∈ Pc j, βep ≤ xa j (6.4)

Each physical path p ∈ P is characterized by an end-to-end latency, ψ(p). The latter cor-

responds to the sum of delays of its forming l ∈V ∪Va . Formally,

ψ(p) = ∑
l∈V∪Va

∆l p ×ψ(l),∀p ∈ P (6.5)

Finally, a communication e ∈C must be hosted in a path p, ensuring an end-to-end latency

lower than that required by the application.

∑
p∈P

ψ(p)×βep ≤ req_ψ(a), ∀e ∈C (6.6)

The aim is to find the Edge Host i to relocate an application a in order to satisfy application

latency and resources constraints, as well as load-balance among Edge Hosts in the coverage

zone K.

6.4 Objective function

Our aim is to minimize the total cost of Edge Application placement decision with the respect

to the all defined constraints above. We formulated the objective function as follows:

min(α ×φl +µ × (β ×φc +σ ×φm)) (6.7)

Where φl , φc, φm reflect the cost of the latency to reach Edge Host, selected CPU and Memory,

respectively. 
φc = ∑

k
i=1 xa,i(Ci −CPUi)

φm = ∑
k
i=1 xa,i(Mi −Memi)

φl = ∑p∈Pc j βep ×ψ(p)

(6.8)

α , β , σ represent weights for: end-to-end latency associated with Edge Host, its current load of

CPU, and memory, respectively. These weights are defined according to the adopted strategy.

µ is an additional weight associated to the physical infrastructure to differentiate Edge Hosts

located at different levels (City, Regional, and International).
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6.5 Edge Relocation Simulator

To perform an evaluation of proposed heuristic (section: 7) and reinforcement-learning (section:

8.1) algorithms the Edge-Enabled 5G network simulator was developed and is presented in this

section. It has been designed to allow gauge effectiveness of proposed algorithms compared to

other strategies.

The simulator shares the same implementation of some components from the demonstrator

described in the previous chapter 5.4.1, such as: Placement Controller, Topology Controller.

The main advantages of the simulator are possibilities to perform studies for more complex

network topology: The Kubernetes clusters that represented Edge Hosts in the demonstrator

have been replaced by data structures in the simulator.

Our initial performance evaluation of the heuristic solution was presented in [75]. The eval-

uation was done based on demonstrator that we introduced in section 5.4. Since we wanted to

perform extensive experiments, including topology scaling, we have transformed demonstrator

into simulator and perform more advanced experiments, described in next chapters.

6.5.1 Simulation model

The simulator consists of three components as depicted in Figure 6.2:

• End-User Simulator has replaced Free5G Core and UERANSIM. This components of the

demonstrator represent multiple end-users that are connected to Edge infrastructure. The

applied mobility model assumes that users can move across neighbour network cells with

uniform distribution. The mobility model also assumes that user cannot return to the cell

from which he last came.

• ERC: Edge Orchestrator has inherited all logical blocks. Placement Controller and Net-

work and Edge Topology registry shares the same implementation with demonstrator.

Observability Controller watches for resources utilization, however the difference with

simulator is that it observes virtualized Edge Hosts while demonstrator watches real Ku-

bernetes clusters. The service orchestrator has been developed from scratch as a replace-

ment for EMCO and it’s role is to instantiate, delete and relocate instances of Edge Hosts

defined in Network and Edge Topology component.

70



6.5. EDGE RELOCATION SIMULATOR

• Network and Edge Topology (NMT) faithfully reproduces Kubernetes clusters, while

providing unlimited possibility of scalling the number and capacity of Edge Hosts.

Figure 6.2: Edge Relocation simulator

The relocation cycle in simulator is presented as follows. First, Edge UE’s Simulator, based

on pre-defined mobility model selects next cell, where UE is moving (only neighbour cells are

allowed, avoiding returns). The geographical movement of UE to the next cell triggers Edge

Orchestrator to consider relocation of Edge Application. Placement Controller is checking with

Observability Controller to determine the necessity of relocating UE’s dedicated Edge Applica-

tion. If so, the Service Orchestrator initiates relocation procedure in Edge and 5G emulator and

migrate Edge Application, next updates resources utilization in NMT, what finalizes relocation

procedure. After the relocation in NMT, Edge UE’s simulator receives notification regarding

the status of finalized operation.

Relocation requests for various UEs are iteratively executed for each tested algorithm mul-

tiple times in order to validate it’s effectivnes according to the defined KPIs.
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6.5.2 Latency modelling

One of the main challenges in selecting an Edge Host for hosting an application is to satisfy

latency constraints. At this point it’s worth recalling that end users can access any node of the

Edge Host topology, as each Edge Host provides both computation and forwarding capabilities.

The topology has been modeled as a graph, including two types of nodes: Edge Host nodes

and mobile network cells. Each cell represents the user’s current position in the network. The

links allow to transfer data between end user and target Edge Host. Each link is characterized

by latency. The end-to-end latency to reach the target Edge Host is the sum of the individual

latencies on the links along the path as shown in Figure 6.4.

This section provides a zoomed perspective on a part of the topology, which is representative

Figure 6.4: Latency modelling
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of the entire structure. It demonstrates how the modeling of latency between Edge Hosts and

end users has been designed. Additionally, the next chapter details how the algorithm searches

for Edge Hosts and paths that meet the latency constraints.

Figure 6.4 provides detailed information about a part of the topology presented earlier in

Figure 6.1. First, let’s note that the latency between any network cell and City-level Edge Hosts

(please recall that each network cell in the same zone is connected to each Edge Host in the

corresponding City-level zone) is randomly selected at the beginning of experiment within a

range of 4 to 6 ms. Then, the latency between Edge Hosts in the same City-level zone is 1 ms,

while between Edge Hosts belonging to two different zones at the City-level, it is 5 ms. To

access any Regional-level Edge Host from any City-level Edge Host, the additional introduced

latency would be 9 or 10 ms. Similarly, at the Regional-level, each host in the same zone

is connected via a link characterized by 1 ms latency, while between different zones, it is 5

ms. Finally, to access an International-level Edge Host from any Regional-level Edge Host, the

additional introduced latency would be 7 ms. The latency modeling is designed consistently

across the entire topology. The main rule that’s stands behind our modeling is "the farther the

node, the higher latency". We also included some other thoughts related to the signal processing

and propagation time.

6.6 Conclusions

The Edge Relocation problem statement considers its modelling, topology design, Edge Host

selection constraints, and objective. This modelling allows for design algorithm as a solution

for a raised problem. In next chapters we are utilizing the above-described problem modelling

to address mentioned constrains and objectives by our proposed algorithms. The proposed orig-

inal latency modeling for the topology simplifies building reliable simulator for Edge topology

to perform evaluation of proposed algorithm under the conditions similar to the real environ-

ments. The generic latency model utilize building large-scale topologies, enabling us to validate

scallability of proposed algorithms in configurations comparable to those in real environments.
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Chapter 7

Edge Application Relocation Heuristic

decision algorithm

To address the issue of Edge application relocation as described in the previous chapter, two so-

lutions have been proposed. The first is a heuristic-based algorithm, called Edge Application

Relocation Heurisitc or in shortcut EAR-Heuristic and the second is Rainforcement-

Learning (RL) based approach, named EAR-RL. This chapter focuses on a heuristic approach,

where next is dedicated to Reinforcement Learning solutions.

7.1 Edge Application Relocation Heuristic

algorithm

This section describes end-to-end operating principle of the proposed heuristic presented in

the proposed Algorithm 1. Additionally, subsequent subsections deep dive into more detailed

perspective. In order to identify Edge Host to relocate an Edge Application the proposed

EAR-Heuristic proceeds as follows:

• Firstly, it checks if the current host is still responding to the application requirements (line

3). If so, no Edge Relocation is triggered and the application is maintained in the current

Edge Host, and it ends algorithm (lines 4-5).

• Otherwise, EAR-Heuristic search for a new Edge Host. To do so, it iteratively divides
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Algorithm 1 EAR-Heuristic
1: Input: ns, Topo, currentHost

2: Output: bestHost

3: if checkHostSatisfyConstraints(currentHost) then

4: bestHost = currentHost

5: break

6: end if

7: First_Edge = Topo.getEdge_City(ns)

8: Current_Edges[] = Topo.getEdge(First_Edge.Att_city, First_Edge.Att_Reg, First_Edge.Att_Int)

9: candidateEdgeHosts, toEvalNeighEdges = FindCondidates(Current_Edges)

10: while candidateEdgeHosts.empty == True do

11: checkedEdgeHosts.append(Current_Edges)

12: Current_Edges :=[]

13: if toEvalNeighEdges.empty == True then

14: Return bestHost=null

15: end if

16: for each edge ∈ toEvalNeighEdges do

17: if (!checkedEdgeHosts.contains(edge) &

18: !Current_Edges.contains(edge) &

19: edge.Att_Int == First_edge.Att_Int) then

20: Current_Edges.append(edge)

21: end if

22: end for

23: toEvalNeighEdges := []

24: candidateEdgeHosts, toEvalNeighEdges = FindCondidates(Current_Edges)

25: end while

26: if (candidateEdgeHosts.count != 0) then

27: bestHost = bestEdgeHost(candidateEdgeHosts)

28: else

29: bestHost = null

30: end if

31: Return bestHost
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the coverage zone into several search areas (described at section 7.1.1) in order to greedily

explore the Edge Hosts search space.

• Secondly, the previously resulted local search areas are sequentially explored in order to

find an appropriate Edge Host. Specifically, our algorithm inspects the local search area

to find Edge Hosts that satisfy all application’s constraints and therefore consider them as

Edge candidates (line 9, or next 24; details in subsection 7.1.2).

• If eligible candidates are found, our algorithm selects the Edge cluster that minimizes

the objective function (line 27, described in subsection 7.1.3) expressed in the previous

section. Otherwise, it explores the next local search area.

• Finally, if no eligible solution is found in all local search zones, our algorithm will reject

the Edge Relocation request and keeps the application in the current Edge Host (lines

13-14, 29).

To summarize, the EAR-Heuristic algorithm is presented as Algorithm 1. It iterates over

next search area one by one (subsection 7.1.1), while exploring it in the following way: it

invokes procedure 2 named "Find Candidates" inspecting given search area to identify Edge

Hosts that satisfy all application’s constraints and therefore consider them as Edge Candidates

(subsection 7.1.2). However, if procedure 2 does not identify any Candidates, algorithm 1

explore next search area in coverage zone, till it identifies any Candidate. Finally, if any of

Candidates exist, Algorithm 1 invokes the procedure 3 called "bestEdgeHost" to perform a

classification method of choosen Edge Host among Candidates and select the best one according

to taken strategy (subsection 7.1.3).

7.1.1 Local search areas construction

As explained previously, EAR-Heuristic triggers the search phase only if the current Edge

Host no longer respects the application’s requirements.

The structure of the local search areas within the defined coverage zone is described in Algo-

rithm 1 and presented more detailed at right side of Figure 7.1. First, the algorithm will build

the primary local search zone. To do so, it identifies a reference Edge Host at the City-level.

The latter corresponds to any cluster which is directly connected to the network cell where the
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end user is located (line 7 of Algorithm 1). Then, all Edge clusters belonging to the same zone

will be added to athe local search area. Next, the hierarchical controllers of the reference Edge

Host will be selected to be added to the local search area. Note that hierarchical controllers

correspond to Edge Hosts belonging to the Regional and International levels and which are

controlling the geographic zone to which belongs the reference Edge cluster (line 8). Let’s take

the Edge-network topology depicted in Figure 7.1 as an example. For the cell number 7 where

the UE is located, the reference Edge Host is one of "Zone City 1" Edge Hosts (i.e., 7 to 10).

Hence, the first local search zone will be composed of the following Hosts: 7, 8, 9, 10, 2, 3,

4, 1. If no eligible candidate is found, next local search areas are iteratively constructed with

respect to the previous local search area. Specifically, a new search area is composed of clusters

that are direct neighbors (directly connected) of clusters of the previous local search area (lines

10-25). Consequently, based on the reference topology in Figure 7.1, the second local search

zone will be composed of the following Edge clusters: 11, 12, 5 while the third local search

space will be composed of clusters: 13, 14, 6, the fourth: 15, 16, and so on. The procedure will

be re-executed until the whole coverage zone of "International region 1" is explored or eligible

Edge Host candidates will be identified.

7.1.2 Filtering phase and Edge Host selection

As described in Algorithm 2 called "Find Candidates" the filtering phase aims to explore all

Edge Hosts in a given search area in order to check whether they are eligible to relocate appli-

cation or not. The Edge Host can be considered as an eligible candidate only if it satisfies all

constraints. Two types of constraints are considered:

• Application-specific (lines 4-8):

– the targeted latency which is compared with the latency offered by the shortest path

between the network cell na ∈ Na and the current investigated Edge Host (line 4). The

shortest path calculation returns also a path how to reach Edge Host that can be used as

an instruction for routing protocols if considered host will be selected.

– the requested virtualized resources which are compared with the available resources of

the considered Edge Host (line 7-8)
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Figure 7.1: Initial placement attempts

• Infrastructure-specific (lines 9-10):

– the load threshold which is compared with the load of the current Edge Host to which

are added the application’s requested resources.

7.1.3 Edge Host classification

Finally, among the identified Edge Candidates the Edge Host that minimizing the objective

function (described in Section 6.4) will be selected to relocate the application. Among all

selected Edge Candidates, the Algorithm 3 is searching for best one according to defined ob-

jective function. Best means the Edge Host with the least value of cost calculated according to
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Algorithm 2 FindCandidates
1: Inputs: App, ns, Current_Edges

2: Outputs: candidateEdgeHosts, toEvalNeighEdges

3: for each edge ∈ Current_Edges do

4: To_EdgeHostLat, path = Shortest_path(ns, edge)

5: if To_EdgeHostLat <= App.Lat then

6: toEvalNeighEdges.append(edge)

7: if (edge.CPU > App.CPU &

8: edge.MEM > App.MEM &

9: (edge.usedCPU + App.CPU) ≤ti &

10: (edge.usedMem + App.Mem) ≤ti) then

11: candidateEdgeHosts.append(edge, path)

12: end if

13: end if

14: end for

15: Return candidateEdgeHosts, toEvalNeighEdges

the defined objective function. It is important to mention here, that the values of latency and

resources’ utilization are first normalized (to make fair comparison between different physical

quantities) before calculating objective function.

7.2 Evaluation

In this section, we assess the performance of proposed EAR-Heuristic decision algorithm

evaluated in an experimental simulator platform that was described in section 6.5. To gauge

the effectiveness of proposed EAR-Heuristic algorithm, it has been compared to four related

strategies: (i) O-Latency, (ii) O-LoadBalancing, (iii) O-Hybrid and, (iv) H-Hybrid. Finally, the

obtained results are analyzed and the effectiveness of proposed solution is discussed.

7.2.1 Experiments’ assumptions

• Topology: Primarily, a single-coverage zone topology is considered, as presented in Fig-

ure 7.1 This configuration involves 42 network cells grouped into 4 zones. Additionally,
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Algorithm 3 bestEdgeHost
1: Input: ns, candidateEdgeHosts, α , β , σ

2: Output: bestHost

3: Cost = ∞

4: eg = null

5: for each edgeHost ∈ candidateEdgeHosts do

6: N_Lat, N_CPU , N_Mem = Normalized(Lat(ns, edgeHost), Edge.CPU, Edge.Mem)

7: Cost_Edge = α ×N_Lat +(β ×N_CPU+σ ×N_Mem)×Static_cost

8: if Cost_Edge < Cost then

9: Cost := Cost_Edge

10: bestHost := Edge

11: end if

12: end for

13: Return bestHost

22 Edge Hosts were considered. Among them, (i) 16 belong to the City-level with a de-

fined capacity of 4GB RAM and 4 vCPU, (ii) 5 belong to the Regional-level characterized

by 8GB RAM and 8 vCPU, and (iii) 1 belongs to the International-level with 12GB RAM

and 12 vCPU.

• The τ: has been set to 80% of total capacity of given clusters. Let us recall that τ value

specify the maximum tolerated load of Edge Hosts, which in this case is 80% of total

capacity (total capacity - ti).

• The level cost: µ is set as follows: 3 for City-level, 2 for Regional-level and 1 for

International-level. Let’s remind here, that µ value maps the unitary cost of application

placement depending on the level. That means it is cheaper to instantiate application in a

big international-level centralized data center, rather than in a small Edge Host distributed

in a city.

• Application requirements: We consider D number of different Edge applications, of

which: 33% represents cloud-gaming applications with target latency requirements of

10ms, 33% corresponds to autonomous vehicle autopilot with target latency requirements

of 15 ms, and 33% of UAV autopilot applications with requirements of 30 ms. We assume
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that each Edge application is characterized by a CPU request varying in [0.5–1] vCPU

and RAM request varying in [0.5–1] GB RAM. It is worth to remind here, that we are

considering dedicated Edge Application, it means that each application is responsible

(and closely coupled) for handling single end user.

• Initial application placement: A set of D generated Edge Applications with its attributes

(type, resources’ requirements, initial end user location) is initially deployed randomly

across the coverage zone while respecting their requirements. To do so, an initial pro-

cedure presented in algorithm 4 is executed. It proceed as follows: for each application,

the randomly selected Edge Host is checked. First, checking for enough resources (with

a respect to τ value) of the selected Edge Host to host the considered Edge Application

is proceed. Additionally, it checks whether the latency (from initial end-user location) to

reach the selected Edge Host is lower than the target latency for the application. If either

of these conditions is not met, another Edge Host is selected for validation. If none of the

Edge hosts can host the Edge Application, the entire procedure is finished with failure.

Then, the procedure might be repeated several times, until proper configuration will be

identified, since each procedure execution, starts with various order of applications and

randomly selected Edge Hosts.

Algorithm 4 Initial placement of Edge Application Algorithm
1: for each app ∈ edge application list do

2: while app is not yet allocated do

3: Select a random Edge Host

4: if Edge Host has enough resources for the app &

5: Edge Host latency is lower than app’s latency request then

6: Allocate the edge app to the Edge Host

7: end if

8: if all Edge Hosts already explored then

9: Return

10: end if

11: end while

12: end for
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• Number of Applications: To determine the reference number D of Edge Applications

to be deployed in asssumed topology, an prerequisite experiment has been conducted. It

aims at finding efficient number of applications. By "efficient" we mean a number that

can be deployed relatively easily while still simulate reasonable load on the infrastructure.

This allows for efficient evaluation of Heuristic algorithm.

Figure 7.1 presents the results of initial placement algorithm of Edge Application exe-

cuted in the assumed topology 100 times. It illustrates how frequently the algorithm can

successfully determine initial placement of all Edge Applications, depending on the num-

ber of applications. The threshold of 85% marked at chart represents reference efficiency

value of initial placement, that has been selected in a heuristic manner.

To facilitate an efficient performance comparison, the number of applications D reaching

at least assumed threshold, has been set to 50. This choice generates a substantial load on

the given topology with relatively efficient number of attempts, while providing room for

the algorithm to find the initial placement.

Figure 7.2: Initial placement attempts

The selected number of application needs to be treated as a reference value assumed in a

heuristic manner for conducting first performance evaluation and comparison between op-

timal and heuristic approaches. Subsequently, the experiment described in Section 7.2.6
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investigates how the algoirthm’s performance varies depending on the number of appli-

cations.

• Relocation requests: A relocation request is composed of two information, firstly, it

specifies the end user to whom this request applies to (user who is associated with dedi-

cated application), and secondly, it indicates the destination cell where the end user of this

application is moving to. The first value is generated randomly, while the second relies

on a mobility state machine defined for the assumed network cell topology, as shown in

Figure 7.2.

For fair comparison of algorithms, an equal number of relocation requests must be per-

formed in each single experiment. We need specify the number of requests to be analyzed

by each of algorithms. For that second prerequisite experiment was conducted. The goal

of this experiment was to asses the impact of relocation requests number on stability of

obtained performance results of tested algorithm. For this purpose, we deployed 50 Edge

Applications in the given topology and executed testing experiment, while validating ra-

tio of relocation rejections of EAR-Heuristic. The number of sent relocation requests

has been defined between 20 and 400 with a granularity of 20.

Figure 7.3: Number of iterations tunning

As depicted in Figure 7.3, while assuming more than 200 requests, the obtained results

seem to stabilize and achieve similar values, considering the confidence intervals. There
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is no difference in how many relocation requests are executed for each algorithm after

crossing number 200. To conclude this point, a reference number of 250 relocation re-

quests has been selected in a heuristic manner. 250 relocation requests mean, on average,

each of the 50 end users (application) will move 5 times.

• Additional assumptions

To make a fair comparison between our proposed algorithm and other strategies, for all

tested algorithms we keep the same: set of applications, its initial placement, the same

mobility paths (the same relocation requests). Single testing of all algorithms is called a

’single iteration.’ In our particular case: single iteration consists of six experiments, each

testing a different strategy.

To ensure the reliability of results, these iterations are repeated 100 times to calculate

confidence intervals. Each next iteration covers: different set of Edge application (vari-

ous application requirements), different initial placement and different set of relocation

requests, while keeping the same: topology configuration and number of Edge application

D.

7.2.2 Performance metrics

We define the following performance metrics to assess the efficiency of our solution:

• Tr: The rate of triggered relocations. It corresponds to the ratio of executed relocations

following the end user mobility.

• Rr: The rate of relocation rejection. It corresponds to the ratio of rejected relocation requests

due to the failure of the algorithm to find an Edge Host to which the application can be

migrated.

• CPU r: The rate of average usage of vCPU at Edge Hosts aggregated per level.

• Memr: The rate of average usage of Memory at Edge Hosts aggregated per level.

7.2.3 Scenario description

We compare our algorithm to the following strategies:
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• O-Latency strategy selects the optimal cluster that minimizes the latency between the end user

and its application (α = 1 & β = 0 & σ = 0).

• O-LoadBalancing strategy selects the optimal cluster that will balance the load of clusters at

the considered Edge-network topology (α = 0 & β = 0.5 & σ = 0.5).

• O-Hybrid strategy selects the optimal cluster taking into account a mix of above strategies

with a respect to defined weights (α = 0.5 & β = 0.25 & σ = 0.25).

• H-Hybrid is a variant of EAR-Heuristic. This strategy aims to always find better Edge clus-

ters to host Edge application following the mobility of end user. The main difference com-

pared to EAR-Heuristic is H-Hybrid is not skipping looking for new Edge Host, while current

Edge host is satisfying application requirements (α = 0.5 & β = 0.25 & σ = 0.25).

Metrics and performance results are calculated, when relevant, with a confidence interval equals

to 95% based on 100 repetitions.

7.2.4 EAR-Heuristic parameters weights tuning

In order to identify the most performing variant of EAR-Heuristic algorithm, in the first step

the parameters of objective function were subjected to evaluation. The tested variants with

different objective function weights have been presented in the Table 7.1. The experiments

were performed based on assumptions done in previous sections.

Table 7.1: EAR-algorithm objective function weights variants

Parameter Var I Var II Var III Var IV Var V

Latency (α) 0.5 0 1 0.7 0.3

CPU (β ) 0.25 0.5 0 0.15 0.35

Memory (σ ) 0.25 0.5 0 0.15 0.35

According to the obtained results presented in Figure 7.4, Variants II and V achieved the

lowest average rejection rate among all the variants. This is because Variant II considers only

resource utilization, meaning that minimizing the objective function leads to the selection of the

least-loaded Edge Host among currently considered by heuristic a set of Edge Hosts. Similarly
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Variant V is mainly focused with finding a load-balancing for Edge topology. This, in turn,

increases the capacity of the entire Edge system and results in the fewest rejected relocations.

On the other hand, second variant means that objective function is not trying to optimize (mini-

mize) latency, but only to satisfy application requirements. In terms of Triggered rate all variant

are performed similarly, so it is hard to specify candidate based on this results. Apart of Variant

II, the Variant I has been selected to further analysis, since it is a straight hybrid version, where

it should not only balance a load, but as well try to minimize latency. Let’s call Variant II as

EAR-LB (Load-balancing), and the variant I as EAR-Hybrid.

Figure 7.4: Objective function parameters tuning results
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7.2.5 Heuristic and Optimal comparison

This subsection presents obtained performance results for all optimal strategies and both vari-

ants of EAR-Heuristic algorithm. The Figure 7.5 depicts the rate of triggered relocations

while Figure 7.6 presents the rate of rejected relocation for each type of Edge Application (i.e,

Cloud gaming, V2X and UAV) throughout the experiment. As expected, both variants: EAR-LB

Figure 7.5: Triggering rate for 50 Edge application

Figure 7.6: Rejection rate for 50 Edge application
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and EAR-Hybrid of EAR-Heuristic algorithm considerably minimizes relocations rate. Indeed,

its reduce the number of triggered relocation by at least 3 times compared to other strategies,

while achieving similar rejections rate. In doing so, the applications can be kept in the same

Edge cluster if the latter respects its requirements in terms of target latency and resources (i.e.,

CPU and Memory). Unfortunately, other methods trigger much more Edge Relocations that

may inducing hence a service interruption.

Figure 7.7: Average resources (vCPU, Memory) utilization per level
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Next, the Figure 7.7 presents the average aggregated load of vCPU and Memory at the

whole Edge topology per level. As expected, the O-Load Balancing strategy evenly distributes

the load across levels, while achieving the lowest rejection rate however with a high triggering

rate. The O-Latency strategy is trying to first load City-level and next Regional-level clusters

in order to offer the lowest latency, but it induces the highest rejection rate due to overloaded

clusters. Our EAR-Heuristic algorithm ensures a trade-off between clusters load balancing

and latency minimization. Indeed, it maintains a satisfactory clusters load while offering a

reasonable latency to end users.

We can observe that O-Latency strategy is trying to place applications starting with the

closest levels of Edge topology as depicted in Figure 7.7, however it represents the highest

rejection rate among all strategies, since it overload city-level clusters first and than cannot

identify more resources for most demanding (in terms of latency) applications.

O-LoadBalancing strategy presents the best results in terms of rejection rate, however it

introduces more relocations than our proposed algorithm. Both variants of heuristic algorithm

receives low rate of search rejections while maintaining lowest number of Edge Relocations as

illustrated at charts 7.5 and 7.6 what is expected value, since first of all our proposed algorithm

aims at minimizing the number of Edge Relocation operation, while maintaining low rejection

rate.

Table 7.2 depicts the convergence time of the different relocation strategies. The times

might be dependent on computational power, however we wanted to illustrate certain trends.

It is straightforward to see that Heuristic-Hybrid algorithm (special variant of heuristic)

receives similar results in terms of rejection and successful relocations rate to the O-Hybrid

strategy, while due to our proposed heuristic it minimizes algorithm execution times more than

3 times as presented in Table 7.2, while both variants of EAR-Heuristic algorithm minimizes

the computation time 6 times in comparison to all optimal searching. The fast and efficient con-

vergence time favor end user QoE by minimizing the service interruption during the relocation

procedure.
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Table 7.2: Convergence Time

O-Load
Balancing

O-
Latency

O-
Hybrid

EAR-
Heuristic
Hybrid

EAR-
Heuristic

LB
H-

Hybrid

Average
Execution
Time [ms] 77.00 76.64 76.76 14.60 12.97 31.37

Relocation
Rejection
Rate [%] 5.8 ±1.16 23.24 ± 1.69 14.58 ± 1.88 12.32 ± 2.38 9.16 ±2.33 16.76 ± 1.75

Relocation
Triggering
Rate [%] 65.56 ± 1.82 32.76 ± 1.88 71.24 ± 2.14 16.05 ± 1.49 17.97 ±1.53 69.67 ± 1.37

7.2.6 End users scaling

In the next experiment, the main objective is to assess the impact of scaling the number of

end users on the algorithm’s performance. To remind, each end user is linked to a dedicated

Edge Application, which implies that increasing the number of end users will also increase the

number of Edge Applications deployed on Edge infrastructure. All the assumptions for this

experiment remain the same with those in the previous section, except for the number of end

users (and Edge Applications), which has been adjusted. For comparison purposes, four distinct

values of D have been chosen to be tested: 30 applications, 40 applications, 50 applications,

and 60 applications. Moreover, the same distribution of application types was maintained.

Specifically, for each number of applications, 1
3 were of the Cloud-gaming type, 1

3 were of the

V2X type, and 1
3 represented UAVs, with precision up to divisibility by 3.

The Figures 7.8a) to 7.8d) presents triggering rates, while charts 7.9a) to 7.9d) depict rejec-

tion rates for all tested algorithm variants, corresponding to specific values of "D" representing

the number of applications. Presented charts also take into account the different types of appli-

cations.
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Figure 7.8: Relocation Triggering Rate for different initial number of applications
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Figure 7.9: Relocation Rejection Rate for different initial number of applications
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The initial observation is that the relative ratios of the results obtained for different algo-

rithms remain consistent. The same tendency is observed across all algorithms, regardless of

the number of applications. For example, independently on the number of applications, the most

effective algorithm in terms of minimizing rejection rate remains EAR-LB, while the least effec-

tive one is O-latency. Furthermore, concerning triggered relocations, EAR-LB consistently

outperforms the other algorithms by minimizing the number of triggered relocations.

Another noticed trend observed during analysis of rejection rates is that as the number of

applications (users) deployed on the infrastructure increases, the rejection rates also rise for

all algorithms. This occurs because a higher number of applications generates more load on

the infrastructure and reduces the available space on other Edge Hosts for application reloca-

tion. Consequently, the algorithms struggle to find optimized Edge Hosts and end up rejecting

requests.

Furthermore, in terms of the triggered relocation rate, increasing the number of applications

results in a decreasing the relocation triggering ratio. The reason for such a behavior is simi-

lar to that for rejection rates. More applications lead to a higher infrastructure load, which, in

turn, means less available resources. Consequently, less available Edge Hosts to relocate appli-

cation directly reduces successful relocations. As mentioned, higher rejection rate minimizes

relocation rates, as both KPIs are interconnected.

The key outcome of this experiment is EAR-Heuristic outperforms other optimal algo-

rithm variants independently of the application number. This allows to scale out algorithm for

larger and more ’crowded’ infrastructures. Regardless of the application number, the obser-

vations and conclusions from the analysis of previous experiment remain valid for all tested

algorithms.

7.2.7 Topology scaling

The next experiment aims to validate the impact of scaling the topology on the obtained results.

To achieve this, we keep all the assumptions from the original experiments unchanged, except

for topology size. The topology has been doubled compared to the primary experiments. Figure

7.10 illustrates both topologies, on the left, there is a regular topology, which was previously

explored in last section’s experiment. On the right, there is the new topology, which is an

94



7.2. EVALUATION

expanded coverage zone, mirroring the first coverage zone. This makes the topology twice as

large as in the previous experiments, also in the capacity size and composition of Edge Hosts

across levels and zones. In addition, the number of network cells were doubled as well. It’s

important to note that other assumptions, such as the number of users, number of mobility

events, and so forth, remained consistent.

In the tested scenario, involving 50 Edge end users, (which correspond to 50 dedicated Edge

Applications) were traversing 84 network cells while triggering relocation requests. Table 7.3

presents comparison of convergence times for different algorithm variants for one-coverage

(previous section experiment) and two-coverage zones.

Observing the results, it becomes evident that all variants of the Heuristic algorithm con-

sistently achieve comparable processing times across various topology scales. In contrast, all

variants of the Optimal algorithms require at least twice the time to converge in doubled scale

topology. The reason is the fact that optimal algorithm, no matter on its variant has to consider,

check and analyze all Edge Hosts, while heuristic algorithm is focusing solely on a subset of

closer located Edge Hosts leading to a consistent convergence time regardless of topology size.

In this particular case, doubling the number of Edge Hosts results in a proportional doubling

Figure 7.10: Single region topology vs scaled double region topology
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Table 7.3: Convergence Time of scalled topology comparison in [ms]

Zones number
O-Load

Balancing
O-

Latency
O-

Hybrid
EAR-

Heuristic
EAR-

LB
H-

Hybrid

Single Zone
Average Execution

Time [ms] 77.00 76.64 76.76 14.60 12.97 31.37

Two Zones
Average Execution

Time [ms] 162.68 162.39 160.96 15.37 14.24 34.21

of processing time for the Optimal algorithm. To sum up, heuristic algorithm demonstrates in-

creased effectiveness for larger scale topologies, while maintaining convergence time at similar

level. In constrast, the processing time for Optimal algorithm grows linearly in proportion to

the Edge Host number. This underscores the ability of scalling the EAR algorithm for extensive

and large-scale Edge systems.

7.3 Conclusions

This chapter introduces the EAR-Heuristic algorithm and explains its principle of operations.

Next, several assumptions of performance evaluation were presented. We have shown tuning of

related algorithm parameters. Testing of performance of the proposed solutions was conducted

under various conditions, including topology and application scaling, and then compared them

with other optimal strategies.

In summary, conducted experiments prove that the EAR-Heuristic in its EAR-LB variant

outperforms other optimal strategies in terms of triggering relocations. This positively impacts

both user QoS and QoE, as it results in rare service interruptions caused by Edge Application

relocations. EAR-LB also performs satisfactorily in terms of minimizing the number of rejected

relocations by effectively balancing the load within local topology areas.
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Most importantly, all EAR-Heuristic solutions remains scallable, considering higher ap-

plication numbers and larger topology scales while in addition maintaining a short convergence

time. This rapid decision-making minimizes service interruption time, enhancing the overall

user experience.

Nevertheless, recently, we are observing more and more interest around Machine Learning-

based approaches to solve network decision challenges. Especially Reinforcement Learning

techniques are gaining a momentum, where the agent is learning by interacting with simulated

environment. Thus, we decided to compare the performance of our proposed heuristic solutions

with Reinforcement Learning-based models, what is presented in the next chapter.
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Chapter 8

Reinforcement Learning decision

algorithm

This chapter aims to address the Application Relocation while leveraging the Reinforcement

Learning (RL) techniques. It walks us through the entire process of i) modeling Edge-enabled

5G system as an RL Environment, ii) an agent training and iii) a model evaluation. Finally, a

comparative study with previous, analytical (heuristic) and optimal solution is presented.

Reinforcement Learning is a type of machine learning where an agent learns to make de-

cisions by interacting with a testing environment in a closed loop. The main concept behind

Reinforcement Learning is to enable an agent to learn optimal behaviour (actions) through tri-

als and error, while being guided by environment’s feedback system of rewards and penalties

[88].

Our proposed Reinforcement Learning based framework, presented in this chapter, was

already introduced and evaluated in our research work [73]. Hereafter, we gives insights into

description of the environment and conduct various experiments including deep analysis of the

obtained results.
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8.1 Modeling Reinforcement Learning environment for Edge

Relocation

The proposed Reinforcement Learning framework, illustrated in Figure 8.1, empowers users to

move across geographies, switch between cells, and trigger relocation requests while ensuring

a high-quality user experience. The model makes use of Proximal Policy Optimization (PPO)

algorithm to determine optimal Edge Host to relocate Edge Applications while ensuring the

desired application-requested latency. The application placement is optimized by maximizing

load-balancing at the Edge infrastructure. By ensuring resource utilization and a balanced distri-

bution of workloads, the system’s overall performance is enhanced. This sections aims to guide

how we model, learn and evaluate Edge Relocation solution using Reinforcement Learning.

In the first phase, let’s consider the modeling of Edge Relocation environment. In the context

of Reinforcement Learning, an environment aims at describing and converting the real scenario

into a testing environment where the agent can play to learn optimal policies. The primary

objective of the environment is to map the chosen scenario as precise as possible, to give the

agent all necessary information for taking proper actions. The environment is defined by the

following assets: State, Action and Reward system.

8.1.1 State Observation Space and Action Space

When we started the modeling of the Edge Relocation RL Environment, we established a set

of assumptions, which will be detailed in the following sections. These assumptions primar-

ily aimed to simplify the representation of the real scenario, characterized by high dynamics,

where multiple users can freely move simultaneously, changing their positions and triggering

applications relocations. Moreover, the simultaneous mobility behaviour of multiple users (and

simultaneous relocations) may result in inconsistencies and discontinuities in the environment

state representation. To address these challenges, the first simplification involves restricting

the environment to handle a single user at a time. In consequence, the observability state have

been limited to contain information only about a single user (or application) during a relocation

decision. Despite these simplifications, the original problem modeling and objectives remain

unchanged, as stated in Section 6.3.
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Figure 8.1: Reinforcement Learning framework for Edge Relocation

The state of environment is represented by two vectors:

• The first vector describes the Edge Application p⃗a as shown in Table 8.1. It contains

all the crucial information about the currently considered Edge Application, including

required CPU, required memory, target latency.

Table 8.1: State representation for Edge Relocation RL environement 1/2

App Attribute

App Required

CPU

[mvCPU]

App Required

MEM

[Mb]

App Target

Latency

[ms]

Value 900 850 10

Range [ 500 - 1000 ] [ 500 - 1000 ] [ 10; 15; 30 ]

• The second vector describes the Edge Hosts, expressed as an array of vectors (cr
hi
)r∈R

as shown in Table 8.2. Each row represents attributes of a single Edge Server and con-

tains essential information about Edge Host such as: CPU capacity, and available CPU,
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memory capacity, and available memory, the information whether the currently consid-

ered application is deployed at the given Edge Host, and finally, offered latency toward

the new network cell of the currently considered end user.

Table 8.2: State representation for Edge Relocation RL environement 2/2

Edge

server ID

Available

CPU

[mvCPU]

CPU

Capacity

[mvCPU]

Available

Memory

[Mb]

MEM

Capacity

[Mb]

Is app

Instantiated

Offered latency

towards new cell

[ms]

Edge 1 9000 12000 8800 12000 False 18

Edge 2 3600 8000 3700 8000 True 14

Edge X 800 4000 900 4000 False 6

Range [ 0-12k ] [ 4k-12k ] [ 0-12k ] [ 4k-12k ] [ 0; 1 ] [4-30]

By combining these two vectors, we obtain a comprehensive set of data that can be used to

recognize a given state, analyze it and optimize Edge Relocation decision.

Additionally, both Tables: 8.1 and 8.2 present special bottom row called "Range", which

is not part of the state representation. Instead, it provides information about the ranges that

subsequent values can assume. These ranges for all values make up the Observability State

Space. Agent is exploring states (flexible combination of values within their respective ranges)

withing State Space, to efficiently recognize a given state and optimize its decision.

Looking ahead, during the evaluation of agent learning, we observed some unexpected be-

haviour that required a slight modification in the Observability Space. The agent was unable

to learn latency constraints due to the fact that the values of latency (both offered and target)

were too small compared to other values related to offered and required resources amount. As

a solution, we decided to rescale both latency-related values multiplying by 100 to bring them

within similar scale compared to other values. This adjustment resulted in a more consistent

behaviour.

In addition to the Observation Space, we defined the Action Space, which comprises all

Edge Hosts that can be accessed within the considered zone.
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8.1.2 Reward Function

The reward function serves as direct feedback from the environment to the agent, assessing

the effectiveness of the agent’s decisions regarding the aim of maximizing the mean reward

over episodes. The modeling of the reward function aligns with our multi-constraint problem

modeling. However, based on the results of the heuristic, we adjusted a specific goal for the

reward function: optimize load-balancing in order to minimize rejection rate, while respecting

target latency requirements.

The reward function is then based on two factors. First, we proposed to modify the objective

function of the heuristic solution by not explicitly optimizing the latency. Instead, our focus is

on ensuring the required latency constraint. Second, we aim to increase the system capacity

through load balancing.

First, to assess the Edge Relocation action in terms of load balancing, we need to find

a reliable indicator. We chose to represent it as the delta of the standard deviation of resource

utilization, stated as ∆σ . This is the difference between the standard deviation before relocation,

σ1, and the standard deviation after relocation, σ2.

{∆σ = σ1 −σ2 (8.1)

The standard deviation σ of resource utilization is the sum of two standard deviations: one

for CPU utilization and another for memory utilization across N Edge Hosts. Here, µCPU and

µMEM represent the mean CPU and memory utilization, respectively.

σi =

√
∑

N
j=1 (CPU j

util −µCPU)2

N
+

√
∑

N
j=1 (MEM j

util −µMEM)2

N
(8.2)

In practice, this modeling approach leads the agent to learn directly to select the Edge Hosts

with the lowest percentage load. This differs from heuristic solutions, as the focus is not on

learning to respect resource constraints while optimizing given objective function. Instead, the

objective is to consistently select the best-performing Edge Host each time (Edge Host that is

impacting the most on improving load standard deviation). This approach indirectly represents

a ’best effort’ mode to align with meeting application requirements.

In addition to resources reward, another signal is necessary for our agent to learn ensuring
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the required latency. To address this, a simple reward system is implemented. A reward r is

assigned for selecting Edge Host that satisfies the latency constraint, otherwise a penalty p is

imposed. In our case r equals 0, while penalty p is set to −1.

The final step is to determine the appropriate ratio and balance between the weights of both

factors in reward function (because load-balancing and latency rewards are summed into final

reward) since we want the agent to learn both simultaneously. To achieve this, we have to adjust

the scales for ∆σ , rescaling to ensure that the results fall within the range [0,3].

8.2 Deep reinforcement learning using PPO

To train our Edge Relocation decision agent that we called ER-RL agent, we integrated our

custom environment with a Proximal Policy Optimization algorithm [84]. PPO is a deep RL

algorithm that iteratively updates a policy to maximize the expected cumulative reward. It

achieves this by ensuring conservative policy updates to maintain stability and prevent drastic

policy changes. The selection of PPO as the training algorithm for the agent was based on its

distinct characteristic. Firstly, it is a model-free algorithm [29], meaning it focuses on learning

the pair of State-Action rather than modeling state tansitions in our environment. This is aligned

well with the requirements of our problem modeling. Secondly, PPO uses deep neural network,

which is an efficient way to express policy. Neural networks are as well a powerful function

approximators and it is important to note that the ability to approximate complex and continuous

value functions or policies is crucial for RL. The agent is leveraging neural network, so we can

specified our learning as "Deep Learning". Last but not least, PPO is known for its stability and

robustness, making it a suitable choice for training policies in complex environments such as

the Edge Relocation environment. For all these reasons, PPO algorithm has been recognized as

a decent solver for a telco-specific issues related to: resource allocation for network slices [54]

[31], resource management for 5G network services [72], as well as life-cycle management of

5G Network Functions [70].
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8.2.1 Learning hyper-parameters

The learning hyper-parameters in machine learning are external configuration settings that influ-

ence learning dynamics during the training [20]. During the training of our agent, we repeatedly

monitored the learning parameters and consistently tuned the parameters given below in order to

achieve an efficient learning process as suggested in [66]. Finally, we updated several learning

hyper-parameter for PPO agent compared to default values [48], especially:

• Learning Rate controls the step size during the optimization process. In practice it in-

fluences how quickly or slowly a model learns. This parameter has been set to 1e− 4,

which is the lowest limit of the learning rate range [48]. Setting it low makes increasing

stability of learning and allows to avoid learning sub-optimal policy. We required stability

of learning, since we introduced quite high amount of exploration in the learning process.

A low learning rate in practice also extends the duration of the learning process.

• Entropy Coefficient is a parameter that controls the amount of exploration during the

training. During the initial training sessions, we observed the agent has learned a sub-

optimal policy, selecting only one or two Edge Hosts. To solve this and push the agent to

explore more actions and learn a more optimal policy, we decided to increase the entropy

in the training process. This adjustment aims to favor greater exploration, what allows the

agent to discover better strategies and improve overall performance. Enthropy has been

finally set to 0.9.

• Number of steps hyperparameter refers to the number of steps used to collect experiences

before performing a policy update. Number of steps is set to a value that allows the

algorithm to make reasonably policy updates without being too sensitive to short-term

fluctuations in the environment. The value was set to 10000 steps per update, which is a

quite high value, what means rarer policy updates, enhancing learning stability.

• Batch size specifies the number of samples (timesteps) from the collected experiences

that are used in each policy update. Batch size is a parameter closely related to previous

parameter - Number of steps. The collected experiences are divided into batches, and

the policy is updated based on these smaller batches. We set Batch size value to 2000.

In practice, after these 10000 timesteps, the agent collects experiences and updates its
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policy. Since we set batch size to 2000, the collected experiences will be divided into

five batches of 2000 samples each, and the policy will be updated five times using these

batches. Similarly to number of steps, the bigger batch size makes learning process more

stable without being too sensitive.

8.2.2 ER-RL training sandbox

To train our ER-RL model, we developed a custom RL environment using Python and OpenAI

Gym library [22] as described in section 8.1. Each episode in the training process involved

generating a new single end-user and application dedicated for this user and than simulating

user movement through the cell topology, as shown in Figure 8.1. The end-user is performing

a single movement per episode, with the goal as specified in reward function: to optimize

resource load-balancing in order to minimize the rejection rate, while aiming to respect target

latency requirements. Each episode introduces a new, varied initial load at each Edge Hosts in

the topology, simulating the load of other applications.

To achieve this, a unique application is created for each single episode with specific require-

ments within the range: [0.5-1] CPU, [0.5-1] GB RAM, and latency requirements depending on

its type. Specifically, we differentiate three types of applications based on latency requirements:

10 ms representing cloud gaming applications, 15 ms acting autonomous car steering systems,

and 30 ms for autonomous drones steering systems. Furthermore, at the beginning of each

episode, a UE movement is generated while specifying the first Edge to host the application so

that its requirements (i.e. CPU, RAM and latency) are met.

The learning process for the agent is designed as follows: when a user triggers a handover

due to its mobility, the agent is activated to determine the optimal Edge Host for placing the

Edge Application. Subsequently, the agent takes actions in the environment and receives a

reward based on the effectiveness of its decision-making. By leveraging this approach, the

system can dynamically adapt to changing user requirements and mobility patterns, resulting in

a better overall user experience.
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(a) Mean Reward per Episode (b) Enthropy Loss

(c) Loss (d) Policy Loss

Figure 8.2: RL Learning KPIs

8.2.3 Learning evaluation

Reinforcement Learning process is continuously monitored throughout training. Agents learn-

ing process is described by the set of KPIs that are used to assess and measure the effectiveness

and progress of the learning process. Major learning KPIs have been presented below:

• Mean reward per episode is presenting mean reward for agent’s decisions per episode.

It is is expected to grow over time and finally stabilize at a given high possible value. As

presented in Figure 8.6a we can observe high reward increase in the initial phase and than

gradually smaller increments until a stable value is obtained.

• Entropy Loss is a measure of how much the agent is encouraged to explore and not

finish too quickly in the current policy. In Figure 8.2b, during the first phase, we are
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observing high entropy loss reduction and than gradual stability, as the agent learns and

becomes more confident in its policy. Finally, the entropy loss is becoming stabilizing due

to finding a balance between exploration and exploitation leading to a consistent level of

entropy stabilization.

• Policy Loss is a metric that shows how much the current policy of an agent needs to be

adjusted during the training process. The desired state is stabilizing or decreasing policy

loss over the learning time. As presented in Figure 8.2d, policy learning has stabilized

what suggests that the agent is updating its policy in a controlled manner.

• Loss presented in Figure 8.6b, indicates how much the agent’s predictions differ from the

desired outcomes during the training process. The lowest value the better, so once again

we can observe high descrease at the beginning and gradually smaller decrease until a

stable value is obtained.

All the aforementioned metrics achieved expected "shapes" by growing over the time and

learning from history, and than stabilizing at target values. This indicates that agent has ef-

ficiently learned some policy. However, this is still not enough to asses accuracy of agent’s

behaviour. Currently, we cannot be certain whether policy learned by the agent aligns with

the desired policy defined by reward function. For assessing whether our environment model-

ing and reward function have been designed properly, we need to validate the performance of

agent’s decisions in real-life scenario, as described in the next section.

8.2.4 Masking in Reinforcement Learning

Before comparing our ER-RL model to other heuristic and optimal strategies, it is important to

compare it to an optimal Reinforcement Learning agent. This comparison will help to asses

the efficiency of our agent’s policy. Potential reasons for sub-optimal performance may include

a) inefficient training (bad hyper-parameters configuration or/and insufficient training) or/and

potential mistakes in the environment modeling that may have inaccurately described the Edge

Relocation problem as discussed in previous sections. Such a comparison will analyse if the

mistaken decisions are a results of sub-optimal policy or simply limited choices in selecting an

Edge Host that satisfies constraints.
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To conduct this comparison, we implemented Reinforcement Learning with "bad action"

masking algorithm, known as Maskable PPO [78][30]. This algorithm masks inefficient actions

during the training phase. Before taking an action, the agent checks the environment to identify

Edge Hosts that do not meet the constraints (as described in Section 6.3) and selects only those

that ensure a successful relocation. This mechanism minimizes the number of unfavorable

choices. Nevertheless, if all actions are masked and the application remains at the same cluster

while violating the latency constraints, this action will lead to a penalty.

The ER-RL-masked is a hybrid solution between analytical method (as agent is checks

and masks inappropriate actions in advance) and Reinforcement Learning (selecting action that

maximize reward function among the appropriate ones). We have adjusted reward function to

masked actions only. In the new reward function, the agent is assessed only for Load-Balancing,

with latency considerations excluded since latency is always guaranteed due to the masking.

The ER-RL-masked agent represents an optimal version of the Reinforcement Learning

agent and allows us to verify efficiency of our previously defined ER-RL agent.

8.3 Performance Evaluation

In this section, we assess the performance of our trained ER-RL model and compare it with:

ER-RL-Masked, Optimal and EAR-heuristic algorithms proposed previously in section 7.

To conduct the performance evaluation, we integrated our proposed ER-RL and ER-RL-masked

agents into the existing Edge Relocation simulator introduced in section 6.5. Placement Con-

troller has been enriched by new sub-component called: RL-Edge Relocator that is respon-

sible for RL-based decision for Edge Applications relocation. This integration allowed us to

validate performance of all proposed algorithms using simulator under consistient conditions.

8.3.1 Edge Relocation evaluation environment

To evaluate ER-RL trained model, we leveraged simulator under conditions similiar to those

considered in evaluation of heuristic algorithm in Section 7.2. Let’s remind the key assumptions

of experiments.

First, we consider single zone again, the one on the left side as illustrated in Figure 8.3. The
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simulator relies on an Edge infrastructure consisting of 22 nodes divided into three levels: one

International Edge Host with 12 vCPU and 12 GB RAM, 5 Regional Hosts with 8 vCPU and 8

GB RAM each, and 16 City-level Edge Hosts with 4 vCPU and 4 GB RAM each.

Additionally, the simulation environment includes as well 42 network cells that enable the

attachment of end-users to the Edge-enabled 5G system. In doing so, the cells allow users

to move within the simulated network. These network cells and Edge Hosts are grouped into

zones (highlighted with a common color in Figure 7.1) based on the distance and location. The

distance allows to generate latency between network cells and Edge Hosts as already introduced

in Figure 6.4.

Figure 8.3: Edge Topology

8.3.2 Scenarios Description

Similarly, we consider 50 Edge Applications equitably shared between cloud-gaming, autonomous

vehicle and UAV autopilot applications (i.e. 33% of each type). Additionally, we set a capacity

threshold X to 80% of the total available resources of the Edge Host. This threshold ensures that

a reserve of resources is available for emergency services in case of unexpected traffic spikes or

failures as stated in Section 6.3. Not satisfying this constraint will classify such a decision as a

failure one for any type of used algorithm: RL-based, heuristic or optimal.
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To ensure realistic user movement patterns, we generated the same 250 movement events

for each experiment type using a random selection of UEs. The experiment was designed to

select the first moving UE randomly, and then generate the subsequent cell destinations based

on their current location. This approach allows the simulation of user mobility patterns that

reflect real-world scenarios.

We recall that EAR-Heuristic is a heuristic-based algorithm capable of optimizing the

selection of the destination host while jointly responding to the application requirements and

balance the resource consumption of the Edge infrastructure. Optimal algorithm selects the

Edge Host that optimizes selection of lower latency Host while trying to load-balance resources.

For each experiment, we used the same trajectory for the UE and the same initial placement

for a set of applications. This allowed to evaluate algorithms on a consistent basis and draw

meaningful comparisons between them.

8.3.3 Performance KPIs

We have established the following metrics for evaluating the effectiveness of our solution’s:

• Tr: the rate of triggered relocations. It corresponds to the ratio of executed relocations fol-

lowing the end user mobility.

• Rr: the rate of relocation rejection. It is the ratio of rejected relocation requests due to the

failure of the algorithm to find an Edge Host to which the application can be migrated.

• CPU r: the rate of average usage of vCPU at Edge Hosts aggregated per level.

• Memr: the rate of average usage of Memory at Edge Hosts aggregated per level.

Metrics and performance results were calculated with a confidence interval of 95%, wher-

ever applicable. To ensure robustness and accuracy of the results, we repeated the entire exper-

imental procedure 20 times, allowing us to achieve statistically significant confidence intervals

with the t-Student distribution.

8.3.4 Experimental Results

Firstly, it is crucial to compare and explain the performance of both version of RL-based al-

gorithms. As anticipated, the masked variant demonstrate better results than normal variant
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in terms of minimizing rejections and triggering decisions. The masked-agent covers all non-

feasible actions through constraints verification, and ensure the selection only available Edge

Hosts, effectively minimizing relocations. This makes it a kind of optimally trained model for

RL-based algorithm.

The non-masked variant has the potential to achieve similar performance, however, this was

achieved only partially in our training. As previously explained, the training environment we

established relies on simplified assumptions, impacting the final performance. Additionally,

tuning the learning hyper-parameters turned out to be significant challenge, leaving opportu-

nity for further improvements. Nonetheless, the non-masked variant still operates efficiently

compared with other strategies. Consequently, we can confirm that our proposed RL-based so-

lution successfully addresses Edge Relocation problem. Let’s take a deeper look at comparing

RL-based algorithms with the previously introduced optimization algorithm.

In our comparative study, we focus on algorithms that shares design approach and can be

fairly compared. Both ER-RL variants, EAR-LB and Optimal-LB are specifically designed in

the same manner to ensure low latency and load balancing, and we are focusing on compar-

ing them. The remaining variants including i) Optimal:Latency, ii) Optimal:Hybrid, iii)

EAR-Hybrid) involve a slightly different design approach, considering the optimization (mini-

mization) of latency as well. We decided to keep all the variant to maintain all available options.

Figures 8.4 and 8.5 illustrate the summary of rejection and relocation rates for heuristic,

optimal and RL-based algorithms. Firstly, the rejection rate evaluates how often the algorithm

fails to find an Edge Host that meet the requirements of the application. It is straightforward

to see that ER-RL Masked outperformed all other algorithms, especially our previously pro-

posed EAR-LB (2.47 times lower rejection rate than EAR-LB). ER-RL-Masked algorithm achieves

the lowest rejection rate of all solutions resulting in rate of approximately 3.16%± 0.87% for

cloud-gaming, while not rejecting neither V2x nor UAV applications. At the first sight it might

seems also bit non-intuitive, that EAR-RL-Masked achieved lower rejection rate than optimal

approach, however, still it is a matter of slight design difference, Optimal approach in objec-

tive function takes into account load-balancing among different levels of Edge Hosts topology,

while ER-RL-Masked makes load-balancing without distinguishing servers into different levels,

what makes ER-RL-Masked a bit better in terms of rejection rate than optimal-LB.

Secondly, the triggering rate evaluates how often the algorithm triggers Edge Relocation
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operation to maintain the QoS. It is clear that the EAR-Hybrid remains unrivaled among all

algorithms while the ER-RL algorithm outperforms the Optimal:Load Balancing algorithm.

The contrasting behaviour between the EAR-LB and ER-RL-Masked algorithms can be attributed

to their respective decision-making criteria. EAR-LB algorithm uses a simple approach that

avoids relocation if the current Edge Host meets the application’s requirements, while the

Figure 8.4: Rejection rate summary including RL-based algorithms

Figure 8.5: Triggering rate summary including RL-based algorithms
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ER-RL-Masked algorithm utilizes a more advanced reward function that prioritizes load bal-

ancing, even if the highest reward can be obtained by staying with the current Edge Host.

ER-RL-Masked algorithm aims to achieve optimal performance in dynamic environments, where

resource availability and utilization may vary over time. Overall, ER-RL-Masked takes a more

global perspective by considering the future capacity of the system, while EAR-heuristic op-

timizes only for the current situation.

Additionally, Figure 8.6 shows that both variants of ER-RL algorithm demonstrates de-

(a) Mean Reward per Episode

(b) Loss

Figure 8.6: Load distribution for Edge Relocation RL-methods
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cent load-balancing capabilities across different levels of Edge infrastructure compared to the

EAR-heuristic algorithm. This efficient load-balancing is achieved due to the ER-RL-Masked

algorithm’s ability to allocate resources based not only on the current situation but also in the

context of previous and future decisions. Well load-balancing enables ER-RL-Masked to mini-

mize the rejection rate.

Next, we observed that both Optimal-LB and ER-RL-Masked approaches are resulting in

nearly identical load distributions (CPU and Memory) across levels, as depicted in Figure 8.6.

It is worth to recall that the optimal approach relies on the calculation of objective function,

selecting the least loaded Edge Host considering levels, while for the RL solution we trained

a model to select the one that minimizes the most standard deviation of CPU and Memory

utilization across the topology. Consistent results in both cases suggests that delta of standard

deviation is a solid KPI to asses load-balancing, which allowed us to train well-performing

model in terms of load-balancing. To continue this observation, even though both solutions are

well balancing a load, the ER-RL-Masked approach has achieved lower convergence time than

Optimal:LB as shown in Table 8.3.

Table 8.3: Convergence Time for RL-based algorithms

O-Load
Balancing

EAR-
Heuristic

LB ER-RL ER-RL-Masked

Average
Execution
Time [ms] 88.24 15.49 70.69 72.95

Relocation
Rejection
Rate [%] 4.9 ±1.48 7.8 ±1.29 16.5 ±1.76 3.16 ±0.87

Relocation
Triggering
Rate [%] 64.76 ± 1.82 16.92 ± 0.78 59.7 ±2.14 33.14 ± 1.09
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Table 8.3 provides a summary of the convergence times for all tested algorithms. Both RL

variants have achieved better convergence time than Optimal approach however the EAR-LB

still stands out as the fastest solution. The difference of execution times for ER-RL and ER-RL-

Masked is due to the additional time required for mask computation. In general, the execution

time for RL models is not significantly influenced by the topology size (except the constant

time for mask calculation or gathering the current environmental state). This suggests that RL-

models can be efficiently applied to large topologies, as a performing and quick solution.

8.3.5 Conclusions

In this chapter, we introduced a novel application relocation method based on reinforcement

learning techniques. We implemented a training environment based on OpenAI’s Gym library

[92], and trained RL agents using PPO and MaskablePPO algorithms. In conclusion, the com-

parison between EAR-heuristic and ER-RL-Masked algorithms performances show that both

perform better than the Optimal algorithm. The selection of which algorithm to use depends

on the specific requirements of a telco operator. If operator’s goal would be to minimize the

number of relocations to ensure uninterrupted communications, EAR-heuristic or EAR-LB is

recommended. On the other hand, if the goal is to achieve the lowest rejection rate, to load-

balance resources and always provide an Edge Host for the application, resulting in higher sys-

tem capacity for a larger number of end-users, ER-RL-Masked is recommended. This trade-off

is discussed in the 6G NGMT white paper [107], which considers the design of future networks.

Choosing the appropriate relocation algorithm is crucial for creating efficient networks for 6G

and beyond.

In terms of practical insights coming from our research, our hands-on experience with Re-

inforcement Learning has shown that efficient training of RL model including all prerequesties,

such as modeling of training environment is really demanding task. Especially, tasks like hy-

perparameters tunning and adjusting state/modeling can be time-consuming, which may be

considered as a drawback compared to analytical solutions. On the other hand, we found RL

techniques to be highly practical. Once a model is trained, there is no need for runtime analysis

when a relocation request occurs. The RL model simply evaluates the current state and matches

it with a predefined decision, providing the appropriate Edge Host.
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Summary

The convergence of 5G network and Edge Computing is fostering the development of innovative

use cases making the dream of a fully connected, intelligent digital world almost true. However,

the stringent requirements coupled to the high dynamicity of these new applications make their

orchestration extremely challenging. Specifically, the mobility of end users will undeniably

impact Edge operations. Indeed, the Edge-enabled 5G systems need to provide the capability

to follow moving users while respecting their latency requirements.

In this dissertation, we comprehensively address the support of session continuity in Edge-

enabled 5G system. Relocation between Edge Hosts is required during the mobility of end user

in 5G network, leading to degradation of QoS. To tackle this challenge, we designed, imple-

mented and evaluated an Edge Application relocation procedure by leveraging and expanding

pre-commercial systems of Orange, including: Kubernetes, the de-facto standard for cloud-

native application orchestration and Edge Multi-Cluster Orchestrator (EMCO) solution which

provides the capability of orchestrating Edge applications in a multi-cluster environment. The

implementation of Edge Relocation procedures enables Orange to deploy these tools in Edge

Computing production environment. In a research context, we addressed smart relocation de-

cision challenge by introducing two novel multi-criteria algorithms named: a) heuristic, and b)

Reinforcement Learning. Both aims at selecting a new Edge server to relocate Edge application,

which state unique contribution to the research area of Edge services continuity in 5G system.

117



CHAPTER 9. SUMMARY

9.1 Dissertation contributions

In chapter 2, we introduce the background information of 5G network connectivity with a focus

on ultra reliable low-latency communication. We introduced ETSI-based Multi-Access Edge

Computing architecture, a crucial enabler for 5G system in achieving promised low-latency

communication. Then, we highlighted the main 5G network components that interact with

Multi-Access Edge Computing and presented the possible manner of both systems integration.

Moreover, we identified a functional gap for the support of service continuity withing inte-

grated 5G and MEC system. Both business and research motivation to address this issue were

provided. Finally, we presented a set of use-cases that are awaiting for proposed mechanisms

for industrialization, including autonomous vehicles steering systems, UAV steering systems,

cloud-gaming or extender reality.

In chapter 3, we pointed out several open research challenges and technological gaps of

Edge Computing with a particular focus on advanced services management mechanisms. We

identified gaps related to the design and deployment of Edge systems for telco operators. These

include issues such as the granularity of Edge Hosts; an efficient observability of both infras-

tructure and application level for triggering smart life-cycle management operations. Moreover,

we highlighted implementation gaps, such as multi-cluster connectivity in a multi-cloud envi-

ronment and application state synchronization. Finally, we positioned contribution of this thesis

as point bridging distributed systems, Edge-enabled 5G systems, Management and Orchestra-

tion, and Application Relocation through heuristic and Machine Learning techniques.

The related work presented in chapter 4 provides insights into various research and imple-

mentation perspectives on supporting service continuity in Edge Computing. We conducted a

comparative analysis of existing solutions, and pointed out how the related work tries to solve

relocation decision problem in incomplete manner, often considering dummy metrics, or ne-

glecting the influence of 5G access network. Additionally, we highlighted the originality of

our approach by introducing decision making algorithms that relies on metrics coming from

both Edge infrastructure and 5G core network. Finally, we identified set of 3GPP core network

procedures from releases 16 and 17 that we found useful for the proposed end-to-end relocation

workflow.

In chapter 5, we provided the architecture of Edge-enabled 5G system and the 5G-Edge
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Relocator framework, which was implemented as PoC, taking into consideration cloud-native

principles and a microservices based 5G network architecture. We presented interfaces for in-

terconnecting both the control plane and data plane of Edge Computing and 5G system. Then,

we implemented the proposed system, while leveraging a set of open-source projects such as

free5GC, UERANSIM for 5G network and Kubernetes, and EMCO for Edge infrastructure im-

plementation. Additionally, we implemented our own code extensions to the Edge platform by

implementing missing components, like Edge Topology, Placement Controller or Observability

Controller. Next, at the top of our system Edge-enabled 5G system, we designed an end-to-end

Edge Relocation workflow, encompassing: a) observability of end-user mobility events, b) trig-

gering the relocation decision procedure, relying on real-time infrastructure measurements and

5G network control messages, and finally c) the execution of a zero-downtime containerized

Edge Application relocation across Kubernetes clusters. The implementation outlined in this

chapter stands as an industrial contribution of this thesis, forming part of the evaluation and

industrialization project for Orange, a telecommunications operator. The aim of this project

is to enhance pre-commercial solutions for Edge Computing management and orchestration,

specifically focusing on Kubernetes and EMCO (Edge Multi-Cluster Orchestrator) [4].

Next, in chapter 6, we introduced the Edge Relocation problem statement, providing a clear

overview of problem modeling, the problem statement, and the simulation model. The key

components include: i) Edge and network topology modeled as a graph, considering different

classifications such as levels, zones, and coverage zones; ii) representation of Edge Applica-

tion; iii) problem statement where the objective is to find an appropriate Edge Host to relocate

a given application while respecting its requirements and considering constraints such as re-

sources utilization and latency. iv) definition of objective function; v) simulation model based

on demonstrator presented in previous chapter; and vi) latency modeling in the environment.

The formalized problem modeling is a prerequisite for solution presented in following chapters.

In chapter 7, we proposed a heuristic algorithm called EAR-Heuristic that aims at select-

ing a new Edge Host for Edge Application relocation. The algorithm divides the Edge Hosts

topology into sub-topologies and analyze, subset of Edge Host that satisfies defined constraints

such as latency or resource utilization. Among the servers that meet constraints, algorithm is

calculating proposed objective-function, and the highest-ranking Edge Host is selected. First,

we conducted a set of tunning experiments to adjust algorithm parameters. Next, we performed

119



CHAPTER 9. SUMMARY

a series of experiments to compare our proposed algorithm with different variants of optimal

searching. Our performance comparison aims at validating algorithm efficiency in terms of

defined KPIs such as: convergence time, failed and successful relocation executions. Addi-

tionally, we examined the influence of Edge topology and user number scaling on algorithm

effectiveness.

Finally, in chapter 8, we introduced a new decision algorithm called ER-RL that relies on

Reinforcement Learning approach, where the RL agent is learning by experience, playing with

the environment, making mistakes, and adjusting policies until it learns the satisfied policy. We

go through the entire process of creating an RL-based solution: Firstly, we defined and imple-

mented a training environment that shares similar assumptions as the demonstrator. Among

the environment elements, we defined: i) the observation space, which represents the entire

set of possible states that the Edge-enabled 5G network environment can be achieve, and ii)

a possible action spaces, which include all Edge Hosts in topology. Finally, we defined iii)

a reward function, that is a feedback from the environment to the agent that is asessing the

agent’s decisions. Than, we go through the learning phase, during which we fine-tune the learn-

ing hyper-parameters. We developed two versions of Reinforcement Learning agents based on

PPO algorithm. The first is a non-masked: native ER-RL model, while the second is a hybrid

of RL and a heuristic approach, called ER-RL-Masked. Masked version allowed us to build an

"optimal" model of Reinforcement Learning in the context of fault decisions. This is performed

to compare, the effectiveness of non-masked version with some reference, ideal RL algorithm.

Finally, we evaluated both RL variants, considering all previously examined heuristic and op-

timal algorithms. The results provide valuable insights for telecom operators, helping them to

determine which algorithm proves more efficient under different assumptions and policies.
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9.2 Future work

We conclude this dissertation with a discussion of potential next steps and highlight areas for

further research in the area of support of service continuity for Edge services.

Support for stateful application migration in a multi-cloud Edge Computing environ-

ment. As already mentioned, the cloud-native systems relies on a container based application

deployment were envisioned as a mechanism for running stateless applications. Management

systems like Kubernetes are primarily designed to support stateless applications. However, the

state of the application, particularly concerning end-user data, is crucial for edge services. The

support for state migration along with applications cannot be omitted. There are mechanisms

that application developers can use to keep the state of containerized applications in Kubernetes.

Whether developers choose to utilize new native mechanisms of Kubernetes such as persistent

volumes or decided for alternative options such as distributed and independently synchronized

database, that might be deployed outside of Kubernetes cluster, support for state maintenance

is crucial.

Another challange related to the execution phase of Edge Relocation is support for a multi-

cloud environment. Specifically, operators want to deploy Edge infrastructure in a hybrid mode

– partially on on-premise servers co-located with gNBs and partially on public cloud providers.

This interconnection introduces a range of new research and implementation opportunities re-

lated to multi-cluster connectivity, service mesh for observability in a multi-cloud environment,

and the management of multiple distributions of Kubernetes, as each cloud provider supports its

own custom version. The support for stateful application migration appears to be a crucial point

and should be addressed in the short term, while the multi-cloud issue requires more in-depth

study and can be set as a mid-term challenge.

Reinforcement Learning for Edge Relocation decision model.

As stated in the research outcomes of the conducted experiments, RL turns out to be a

promising choice for the decision model in telco Edge Relocation case. However, the learning

process consumes a significant amount of time, and an ideal training involves numerous tuning

experiments to adjust proposed learning hyper-parameters, enhance the design of the environ-

ment, and redefine the reward function. In this work, following the initial analysis, we chose to

focus on Proximal Policy Optimization (PPO) algorithms. Nevertheless, alternative algorithms

121



CHAPTER 9. SUMMARY

such as A2C, A3C, SAC, or DDPG exist [18]. A thorough evaluation of each algorithm would

provide a comprehensive answer to the question of selecting RL as a method. Since there are

many open-source implementations of these algorithms, we can categorize this task as a mid-

term challenge. Achieving a solid understanding of each variant of RL is crucial to avoid getting

lost in the complexities of hyperparameter.

Another open research challenge related to RL can be formulated as a question: how to de-

sign an ideal model to represent the real environment for training purposes. Such a model

should ensure that no assumptions are missed and all possible behaviors are taken into account.

It seems to be a set of promising new technologies in long-term perspective that may support

such a modeling. Recently the concept of a digital twin appears, it represents a reliable digital

copy of real objects. These objects could include Edge infrastructure as has been discussed in

[64], end-users, and their mobility. Use of digital twins into RL training environments could

significantly simplify the design process and guarantee high-quality learning by providing an

accurate and comprehensive representation of the real-world mapping.
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